Session-Layer Encryption

Matt Blaze

mab@research.att.com

Steven M. Bellovin
smb@research.att.com

ATET Bell Laboratories

Abstract

We describe mechanisms for practical session-layer
security for Internet-based terminal sessions. We
discuss the tradeoffs of providing security at vari-
ous layers of abstractions, from the network to the
session layer. We describe two new mechanisms:
our encrypting, authenticating telnet and our en-
crypted session manager (esm).

1 Introduction

For better or worse, many networks are protected
from Bad Guys on the Internet by means of fire-
walls [CB94]. While firewalls do offer a lot of pro-
tection against certain classes of attacks, by intent
they limit functionality. Paradoxically, this can ac-
tually interfere with other security mechanisms, no-
tably those that require end-to-end encryption be-
tween machines on opposite sides of the firewall.

Firewalls can be deployed at any layer of the
protocol stack. By definition, transport-level or
application-level firewalls act as endpoints for the
network-layer connection. What the user sees as a
single connection is in fact two connections, one from
the user’s machine to the firewall, and a second from
the firewall to the destination machine. Thus, any
network-layer encryption is not end-to-end; it termi-
nates at the firewall in either case. This may or may
not be appropriate in a given security model. Apart
from the difficulties this presents in authentication—
the granularity of the cryptographic protection is
wrong, since the firewall itself 1s always one of the
end-points—it forces the firewall to be trusted more
than might be desirable.

Even when a firewall does serve as a trusted
endpoint, it may not be practical to depend upon
the availability of network-layer security services.
This is especially problematic in the Internet world.
Few vendors today provide or support any IP-based
network-layer encryption products, and it is unlikely
that interoperable network-layer securitycan be re-

lied upon as a standard feature in the immediate
future.

In practice, therefore, encryption sometimes has
to be performed at a layer above that intercepted
by the firewall and without sophisticated, kernel-
level support or infrastructure. Even here there are
choices and tradeoffs. We have developed two prac-
tical tools that implement different high-level secu-
rity abstractions: ESM (Encrypted Session Man-
ager) and an encrypting version of telnet. FEach
has its own advantages and disadvantages, though
they also have a lot in common.

2 Encrypted, Authenticated Telnet

2.1 Protocol Requirements

Recent incidents and research results [Jon95, Neu95]
have us concerned that the Internet may soon be-
come the victim of active attacks. More specifically,
we are concerned that attackers may soon be able
to hijack existing TCP connections and use them
for their own nefarious purposes. Our current lo-
gin sequence, which relies on a cryptographic chal-
lenge/response dialog, is not secure in the face of
such attack; an enemy would wait until the login di-
alog was complete, and then take over control of the
session. A different sort of active attack would be
even more serious; if the routing tables were suffi-
ciently disrupted that the dialog flowed through the
attacker’s site from the beginning, the attack would
be all but undetectable. There are a number of ways
in which this could be done, including bogus routing
messages and subverting the Domain Name System
[Bel89).

All inbound telnet connections to AT&T must
stop at the firewall for authentication; this makes
the telnet [PR83] protocol a natural choice for pro-
viding session security for such connections. An im-
portant goal was to base our mechanism on existing
standards (e.g., keys are negotiated via the standard
option mechanisms) to encourage other sites to in-

stall compatible software that remains compatible

telnet

telnetd

TAC WILL DH

IAC SB DH IS1 1 — key IAC SE

TAC SB DH 1S2 1 — key IAC SE

TLTLr Tt

Diffie-Hellman

IAC DO DH
IAC SB DH SEND1 GEN_KEY IAC SE

TAC SB DH IS1 1 — key IAC SE

TAC SB DH 1S2 1 — key IAC SE

TAC WILL DHCRYPT
TAC DO DHCRYPT

TILT

Start Encryption

TAC DO DHCRYPT

TAC WILL DHCRYPT

Authentication

+ IAC DO DHCH

TAC WILL DHCH —

+ IAC SB DHCH PARM type, length IAC SE

(client displays challenge; reads user response)

TAC SB DHCH IS responsey; TAC SE —

(server validates user; calculates its response)

< TAC SB DHCH IS responseg TAC SE

Figure 1: The telnet encryption option negotiation dialog. Note the three phases: Diffie-Hellman negotia-

tion, encryption start, and authentication.

with the existing telnet mechanisms.

A secondary goal of ours was to preserve our in-
vestment in hand-held authentication devices and
the assorted databases and administrative proce-
dures used to support them. While something
like Kerberos-mediated telnet encryption [Bor93]
might be a good ultimate goal, it would take a lot
more effort to deploy. Also, most current implemen-
tations of Kerberos do not support one-time pass-
words; even with encryption, we still feel that such
precautions are needed [BM91].

For key negotiation, we use Diffie-Hellman expo-
nential key exchange [DHT76]. A single large prime
is used as the modulus, along with a fixed base; ne-
gotiating these parameters, though arguably more
secure, would create the potential for more serious
cryptanalytic attacks.

Diffie-Hellman alone would not meet our goals,
since 1t is unauthenticated; while it would be secure
against hijacked connections, there is no point to go-
ing through the deployment effort if we would need
to replace 1t with a new version when the attackers
develop the capability to divert the start of the con-
nection. If that should happen, this simple scheme
would be vulnerable to man-in-the-middle attacks.
Accordingly, we use our current challenge/response

devices to authenticate the key. More specifically,
we use a one-way function of the exponential, which
both sides know, as the challenge; the user then en-
crypts this challenge via the box. In the presence of a
monkey-in-the-middle, the two sides would have dif-
ferent exponentials, and hence different challenges,
so the authentication would fail. As an additional
protection against active attacks, the system itself
encrypts and transmits a response based on a vari-
ant of the same challenge; the user can use the same
box to validate the host.

There is a subtle attack here if the exponentials
are transmitted as is. Since only a small portion of
the output exponential is used as a challenge (typ-
ically on the order of 20-24 bits), an attacker can
do a brute-force calculation to find a user-attacker
shared key that agrees in those bits with the host-
attacker exponential.! Both sides will have the same
challenge, so the authentication step will succeed.
To avoid this, we use the Interlock Protocol [RS84],

forcing each party to reveal evidence that it has com-

!Trying to calculate a more complex one-way function of
the exponential doesn’t help; the attacker can simply try 224
random secret values until he or she finds one that results in
the right output function.

mitted to its own parameters before it can learn
those of the other party.

2.2 Option Negotation

Key exchange, encryption and challenge/response
parameters are all negotiated and transmitted via
extensions to the telnet options mechanism (Fig-
ure 1). Essentially, telnet and telnetd first deter-
mine that they have encryption capability (using the
WILL/WONT, DO/DONT protocol), and then ne-
gotiate keys as suboptions using the SEND/IS mech-
anism. Once a key has been established, the telnet
side presents a hash of the key as a challenge to the
user, who uses the hand-held authenticator to cal-
culate the response, which is also sent as an encap-
sulated suboption with SEND/IS. telnetd passes
the locally generated challenge (which, if there is no
active attack, will be the same as that calculated
on the telnet side) and the received response and
username as environment variables to the login pro-
gram. (The authentication response and reply can
also be handled as a dialog within the actual en-
crypted session by the login program itself.) The
details of the option negotiation parameters will be
specified in a forthcoming Internet Draft.

If the server detects an invalid authentication re-
sponse responsey, it sends back the message

TAC SB DHCH ISNT TAC SE

instead of responseg. How many times incorrect
replies are accepted is a local matter; it can, of
course, drop the session at any time.

To allow for use of other authentication algorithms
in the future, the protocol includes a message indi-
cating which type of authentication to use, and how
long the challenge and response should be. The var-
ious authentication handlers can be implemented as
external programs; this allows new types to be added
without modifying telnet or telneted.

To prevent an active attacker from hijacking the
session in progress and forcing a return to cleart-
ext or a change to a different key by injecting bogus
DO/DONT WILL/WONT sequences, the key ex-
change protocol can occur at most once per session.
Once encryption has commenced, telnetd refuses
to revert to cleartext mode or change keys. In nor-
mal operation, in which the telnet client controls
whether encryption is to be used, the exchange can
occur at any time during the session, initiated either
by a user keyboard escape sequence or a command
line option to the telnet program. In “firewall” op-
eration, however, telnetd needs to complete the key

exchange (and calculate the challenge) before it exe-
cutes the login sequence. A command-line option to
telnetd forces the exchange at the beginning of the
session and refuses to proceed if the exchange fails.

After the challenge/response dialog, the programs
on either end fork and begin their normal processing.
In “encrypt or die” mode, data received before the
start of encryption is discarded. If it were saved, an
attacker could inject evil commandsin cleartext into
the session before the encryption started.

In our environment, encryption of inbound telnet
connections is not end-to-end. Incoming calls, and
hence encryption, terminate at our firewall [CB94,
Che90]. After the authentication is checked, the user
is allowed to rlogin to his or her ultimate destina-
tion machine. It would be difficult to extend our
current scheme in a secure fashion to provide true
end-to-end encryption; the firewall must check au-
thentication data, and there is no easy way to pro-
vide an out-of-band channel for the user to do a
second round of authentication with the destination
machine.

The dialog between the telnetd server and
the authentication module is quite simple. The
triple (user, challengey; , responsey;) is transmitted to
the authenticator; it replies with either (NO) or
(YES, responseg). Responses are the DES encryp-
tion of the challenge, using a shared key. In princi-
ple, the authentication server’s reply should be dig-
itally signed; in our particular environment, we rely
instead on a physically secure wire between the two
machines. The server’s challenge is a function of the
user challenge; to prevent an attacker from trick-
ing the server into encrypting a user challenge, we
use different ranges of numbers for the two values.
Thus, user challenges are in the range [0,22* — 1],
while server challenges are in the range [224,22° —1].

3 The ESM encrypted session man-
ager

Although the telnet protocol is a natural place to
define network session security, it is not always possi-
ble to run telnet directly between arbitrary trusted
endpoints. Application-level firewalls (such as our
own), multi-hop login sessions and non-TCP/IP con-
nections (like tip, kermit and datakit), sometimes
make it necessary to consider security requirements
at a higher layer than would be visible to individual
network connections. esm, our “encrypted session
manager,” provides such a higher-layer security ab-
straction by running at the shell session level.
Essentially, esm exploits the BsD “pseudo-tty”
mechanism to provide a layer under which every-

alice$ esm

ESM v0.8 - encrypted session manager
randomizing.......... done

local layer ready (run ’esm -s’ on remote)
alice$ rsh bob

bob$./esm -s

ESM v0.6 - encrypted session manager
randomizing.......... done

remote server ready

Starting remote side of 1024 bit key exchange.
(press any key to abort)...

Starting local key exchange.

entering ENCRYPTED mode; type ctrl-" to escape
Key authenticator is 0a4c3310

bob$ echo $KEYHASH

0a4c3310

bob$

(encrypted login session between ‘‘alice’’ and ‘‘bob’’)
bob$ exit
Press <enter> to return CLEARTEXT mode:

bob$ exit
alice$

Figure 2: A sample ESM session.

thing between the user’s local and remote login
sessions 1is transparently encrypted and decrypted.
When first invoked from an interactive shell, esm
provides a transparent pseudo-terminal session on
the local machine. When invoked in “server mode”
(esm -s) from within an existing ESM session, how-
ever, the two ESM processes automatically encrypt
all traffic passed between them. Typically, this sec-
ond session is executed on a remote networked ma-
chine that was reached by using the initial session to
invoke, e.g., telnet or tip, possibly across a firewall
or terminal server. This is perhaps best illustrated
by a simple example (Figure 2).

The local esm session will initially be completely
transparent, passing all 1/O directly from the ter-
minal session to shell session (much like the BsD
script program). The remote esm -s session ini-
tiates a Diffie-Hellman key exchange by sending an
escape sequence on its standard output (which is the
standard input to the local esm process). Once the
exchange has completed and the two esm processes
have agreed on a key, all traffic between them is
encrypted with 3-key triple DES. The traffic is en-
coded using a simple ASCIT hexadecimal represen-
tation; this reduces encrypted terminal bandwidth
by a factor of just over two compared with cleartext
but has the advantage of passing unmolested over
virtually any transport mechanism. A session key
hash, suitable for use as a challenge, is displayable
on the local side and is available in the environment
on the remote side. There is no other authentication
or protection against an active attack.

4 Cryptographic considerations

We use triple DES [NBS77] as our bulk encryption
cipher; its 168 bit effective keyspace is well above
the reach of exhaustive search. We opted for triple
DES because we feel that standard DES is no longer
secure against exhaustive search. Even today, it ap-
pears that a $1,000,000 machine can search the en-
tire 56 bit DES keyspace [Wie94].

Since both our ESM and telnet process typical
user-to-host session traffic, a character-oriented ci-
pher mode that can encrypt and decrypt each char-
acter as received is needed. Our choice is 8-bit
Cipher Feedback (CFB) mode [NBS80]. CFB has
the advantage of eventually “resynching” the cryp-
tographic stream over a channel that occasionally
inserts or deletes traffic. This turns out to be an im-
portant property in this application; even though
telnet uses reliable TCP channels, its own pro-
tocol processing can drop characters under certain
conditions. (The other DES stream cipher, Out-

put Feedback keystream mode, is
unsuitable for two reasons. It is vulnerable to con-
trolled changes by an active attacker, and it requires
that sender and receiver never loose synchroniza-
tion.) [PR&3].

Running any encryption system above TCP has
a significant drawback: an enemy can easily inject
false data into the input stream. Because all error-
checking and retransmission is done below the level
of the encryption, packets with valid TCP check-
sums will be accepted, whether they will decrypt
sensibly or not. This is in contrast to network-level
or transport-level encryptors; bogus packets will not
decrypt to be valid TCP packets, and hence will
be discarded; the normal retransmission mechanisms
will repair the damage.

CFB is also vulnerable to injections of previously-
encrypted data. Because of the limited error prop-
agation characteristics of CFB mode [DP89], any
previously-sent input can be resent by an enemy.
Worse yet, if the same key is used for input and out-
put, an enemy can often choose the plaintext to be
encrypted and reinjected. Suppose you are mailed a
message containing a number of null lines followed

by
echo + + >~/.rhosts

You read the message; while you are staring at it in
wonder, the attacker takes the output stream and
sends it back upstream. The first nine bytes rein-
Jected will decrypt to gibberish, but that’s probably
harmless to the attacker; after that, the CFB decryp-
tion process will resynchronize and the remainder
will be valid input to your session. The best defense
is, as noted, to use different keys for different direc-
tions. (Simply picking different Initialization Vector
(TV) for the two directions is not sufficient.)

For key exchange, we use 1024 bit Diffie-Hellman;
this is the maximum key size supported by RSAREF
and seems to provide adequate security against likely
threats for at least the immediate future. We use 464
of the 1024 resulting key bits: 56 x 3 DES key bits
plus 64 TV bits in each direction. The received pa-
rameters are checked for plausibility (e.g., that that
they are non-zero); this prevents an active attacker
from convincing both sides to calculate an all zero
secret by zeroing each side’s public parameters.

To generate the random parameters, we use the
truerand facility (based on clock skew) from the
CryptoLib package [Lac93]. It appears to work rea-
sonably well on most UNIX platforms, especially
when several runs are combined for each bit.

5 Encryption and the Protocol Stack

Textbooks on computer networking speak of a model
protocol stack with seven layers. Textbooks on cryp-
tography, if they address deployment at all, distin-
guish solely between link-level encryptors and “end-
to-end” encryptors. Reality is far more complex.
There are many different places where an encryp-
tion function can be placed; these don’t always map
neatly into the standard network layer cake.

Link-layer encryption still has most of the proper-
ties traditionally ascribed to it. It can be deployed
locally to protect a particular vulnerable link; it is
in general invisible to higher layers. Even so, there
are problems; link-layer spoofing techniques such as
proxy ARP [CMQ87] are often employed.

Network-layer encryption is more problematic.
Traditionally, the network layer is the lowest end-
to-end layer, and hence is a natural place for ubiqg-
uitous encryption; as we have seen, though, firewalls
and protocol translators break this assumption. We
are thus forced to move our encryptor to a higher
layer.

Even a pure network-layer encryptor is not archi-
tecturally clean. SP3, for example [SP388], has some
modes of operation that make it look much more like
a link encryptor, and other modes that force recur-
sion through the network layer. In general, an en-
cryptor at any given level can operate at either the
top or the bottom of that layer. Furthermore, there
is a semantic difference between encrypting at, say,
the top of the network layer versus the bottom of
the transport layer.

Transport-layer encryption differs from network-
layer encryption primarily in its ability to deliver a
finer granularity of protection. It, too, is affected by
network discontinuities. Both translators and some
firewalls (i.e., the TIS Firewall Toolkit [AR94]) re-
quire the user to “redial”. Ergo, transport-layer en-
cryption cannot be end-to-end either.

Above 1t, matters become even blurrier, especially
since the layering structure is inadequate. Where
does electronic mail live? At the mail transfer level,
as typified by SMTP [Pos82]? This is generally con-
sidered to be application layer. But message for-
matting lives [Cro82] above that, and multimedia
mail above that [BF93]. Where does one encrypt
mail? The usual answer is to encrypt the message
itself [Lin93, Ken93, Bal93, Kal93, Zim92], though
exactly how this should be done for complex mail
messages isn’t at all obvious [CFGM95].

By contrast, one proposal for protection of Web
traffic, the Secure Socket Layer (SSL) [Hic95], en-
crypts the transport connection, rather than the text

of the retrieved page. This does provide some added
privacy protection for, say, those who are retriev-
ing gerbils-mmff.gif, though often the site name
itself (rodents.com) may be sensitive.

Our telnet encryptor demonstrates some of the
problems. The telnet protocol lives on top of
TCP, areliable transport layer, but telnet itself can
delete characters from the data stream presented to
whatever lives above it. And this forced us to use
CFB encryption, whereas encryption in the lower
part of telnet could have been done via OFB mode.
Furthermore, we still have the network discontinuity
problem to deal with.

This is where esm comes in: it operates above any-
thing else, and is set up after all of the connections
are established. Architecturally, this may not be the
best choice. But it is the only way we can do true
end-to-end encryption in the face of a heterogeneous
network.

6 Related Work

There are several other encrypting telnet programs
available, plus an encrypted remote login package
known as deslogin. None of these was quite suit-
able.

The most standardized package is a Kerberized
telnet from MIT. But its use of Kerberos is, for
us, a weakness: we would have had to deploy a
full-fledged Kerberos server in order to use it. Fur-
thermore, it uses Kerberos 4, which in our opinion
suffers from two practical drawbacks: it does not
support the use of hand-held authenticators, which
means people must still type passwords into poten-
tially untrustworthy machines, and it is vulnerable
to outsiders requesting user tickets from the server
and running a password-guessing program against
these tickets [LGSN89, BM92].

A related effort is the encrypting telnet by
Brown and Jaatun, done as a prototype of a stan-
dard telnet encryption option. It required use
of one of the standard authentication mechanisms,
such as Kerberos.

More recently, the STEL package [VTB95] has
been announced. TIt, like ours, uses authenticated
Diffie-Hellman; a variety of authentication mecha-
nisms are supported, including some one-time pass-
word schemes. It does not appear to use standard
telnet option negotiation; however, it can be used
to replace rshd as well as telnetd.

The other secure telnet package is SRA, from
Texas A&M University [SHS93]. It is based on Se-
cure RPC [Sun88], and uses Diffie-Hellman key ex-
change to negotiate a session key. This session key

is used only to transmit the user’s login and pass-
word; the remainder of the session is not protected.
While extending the code to do this latter is fairly
straight-forward—indeed, there are at least two such
implementations available for anonymous ftp—the
scheme would still be vulnerable to active attacks,
precisely the threat we wish to deflect. Furthermore,
the modulus size used is too small, and has in fact
been cryptanalyzed [LLO91].

The deslogin program is similar in spirit to our
esm, though incompatible with telnet. It requires
its own key database, though since it uses chal-
lenge/response authentication it would not be dif-
ficult to modify it to use our current authentication
server and hand-held authenticators. One very use-
ful feature in deslogin is the ability to authenticate
twice, once to a firewall and once to the endpoint.

7 Implementation Status

A basic UNIX implementation, based on the 4.4BsD
telnet and telnetd source, is complete; it runs un-
der most UNix platforms. The Diffie-Hellman key
exchange is performed using the RSAREF library;
this simplifies the patent issues. We hope to make
our code freely available, subject to the usual export
control restrictions on cryptographic software.

An MS-DOS telnet client, probably based on the
NCSA package, is in being developed by some of our
colleagues. Again, we hope to release the code.

We have also completed a basic UNIX implementa-
tion of the ESM package. Like our telnet, it runs un-
der most BsD-derived platforms and uses RSAREF
for its Diffie-Hellman functions. We also expect to
make this code freely available.

8 Conclusions and Future Directions

Our encrypting telnet is a band-aid solution. That
is not necessarily bad: we need a band-aid, to cope
with a threat that in our opinion is imminent. Still,
a solution that was part of an integrated security
architecture would be better. The Internet commu-
nity is experimenting with cryptographic standards
for the link layer [Mey95], network layer [Atk95],
session layer, and application layer (for mail, SNMP,
and many others). While all of these have their uses,
it would be nice if there were an overall vision and
(where feasible) a common key management struc-
ture.

Failing that, we are likely to implement the EKE
or A-EKE authentication protocols [BM92, BM93].
These are password-based, but require no special

hardware and are immune to password-guessing at-
tacks.

Our current scheme has a number of limitations.
The most serious is that it is not truly end-to-end. It
would be nice to either re-encrypt from the firewall
onward, or—better yet—to negotiate a new authen-
ticated session between the user and the ultimate
end point, so that there would be no cleartext on
the firewall machine. Accomplishing either of these
goals while still maintaining security and user con-
venience is not easy. Most likely, we will not try;
rather, we will use encrypted IP tunnels between
the user’s machine and the firewall. Anything else,
including a second layer of end-to-end network layer
encryption, will be transported inside of this secure
envelope.

We would also like to have an “authenticate-only”
mode, for use in situations where encryption is il-
legal. Stream ciphers are not particularly good for
such things. The best idea seems to be to send every-
thing twice, once in cleartext and once encrypted. If
the received cleartext character does not match the
decrypted version, we can conclude that an enemy
has tampered with the session.

References
[AR94] Frederick Avolio and Marcus Ranum.
A network perimeter with secure exter-
nal access. In Proceedings of the Inter-
net Society Symposium on Network and
Distributed System Security, San Diego,
CA, February 3, 1994.

[Atk95] R. Atkinson. Ipv6 encapsulating security
payload (ESP). Internet draft; work in

progress, February 16 1995.

[Bal93] D. Balenson. Privacy enhancement for
Part TI1: al-
gorithms, modes, and identifiers. Re-
quest for Comments (Experimental)
RFC 1423, Internet Engineering Task

Force, Feb 1993. (Obsoletes RFC1115).

internet electronic mail:

[Bel89] Steven M. Bellovin. Security problems in
the TCP/IP protocol suite. Computer
Communications Review, 19(2):32-48,

April 1989.

N. Borenstein and N. Freed. MIME
(multipurpose internet mail extensions)
part one: Mechanisms for specifying and
describing the format of internet mes-
sage bodies. Request for Comments (Ex-

[BF93]

[BMY1]

[BM92]

[BM93]

[Bor93]

[CBY4]

[CFGM95]

[Ched0]

[CMQS8T]

[Cro82]

perimental) RFC 1521, Internet Engi-
neering Task Force, Sep 1993. (Obsoletes
RFC1341); (Updated by RFC1590).

Steven M. Bellovin and Michael Mer-
ritt. Limitations of the Kerberos authen-
tication system. In USENIX Conference
Proceedings, pages 253-267, Dallas, TX,
Winter 1991.

Steven M. Bellovin and Michael Mer-
ritt. Encrypted key exchange: Password-
based protocols secure against dictio-
nary attacks. In Proc. IEEE Computer
Society Symposium on Research in Secu-
rity and Privacy, pages 72-84, Oakland,
CA, May 1992.

Steven M. Bellovin and Michael Merritt.
Augmented encrypted key exchange. In
Proceedings of the First ACM Confer-
ence on Computer and Communications
Security, pages 244-250, Fairfax, VA,
November 1993.

D. Borman. Telnet authentication: Ker-
beros version 4. Request for Comments
(Proposed Standard) RFC 1411, Inter-
net Engineering Task Force, Jan 1993.

William R. Cheswick and Steven M.
Bellovin. Firewalls and Internet Se-
curity: Repelling the Wily Hacker.
Addison-Wesley, Reading, MA, 1994.

Steve Crocker, Ned Freed, Jim Galvin,
and Sandy Murphy. MIME object se-
curity services. Internet draft; work in
progress, March 1995.

William R. Cheswick. The design of a se-
cure internet gateway. In Proc. Summer
USENIX Conference, Anaheim, CA,
June 1990.

S. Carl-Mitchell and J. Quarterman. Us-
ing ARP to implement transparent sub-
net gateways. Technical Report RFC
1027, Internet Engineering Task Force,
October 1987.

D. Crocker. Standard for the format of
ARPA internet text messages. Request
for Comments (Standard) RFC 822, In-
ternet Engineering Task Force, August
1982. Obsoletes RFC0733; Updated by
RFC1327, RFC0987.

[DHT76]

[DP8Y]

[Hic95]

[Jon95]

[Kal93]

[Ken93]

[L.ac93]

[LGSN8Y]

[Lin93]

[1.O91]

[Mey95]

Whitfield Diffie and Martin E. Hell-
man. New directions in cryptography.
IEEE Transactions on Information The-
ory, IT-11:644-654, November 1976.

Donald W. Davies and Wyn L. Price.
Security for Computer Networks. John
Wiley & Sons, second edition, 1989.

Kipp E.B. Hickman. The SSL protocol.
Internet draft; work in progress, April

1995.

Laurent Joncheray. A simple active at-
tack against TCP. In Proceedings of the
Fifth Useniz UNIX Security Symposium,
Salt Lake City, UT, 1995. To appear.

B. Kaliski. Privacy enhancement for
internet electronic mail: Part IV: key
certification and related services. Re-
quest for Comments (Experimental)
RFC 1424, Internet Engineering Task
Force, Feb 1993.

S. Kent. Privacy enhancement for inter-
net electronic mail: Part II: certificate-
based key management. Request for
Comments (Experimental) RFC 1422,
Internet Engineering Task Force, Feb
1993. (Obsoletes RFC1114).

John B. Lacy. Cryptolib: Cryptography
in software. In Proceedings of the Fourth
Useniz UNIX Security Symposium, pages
1-17, Santa Clara, CA, October 1993.

T. Mark A. Lomas, Li Gong, Jerome H.
Saltzer, and Roger M. Needham. Re-
ducing risks from poorly chosen keys. In
Proceedings of the Twelfth ACM Sympo-
stum on Operating Systems Principles,

pages 14-18. SIGOPS, December 1989.

J. Linn. Privacy enhancement for inter-
net electronic mail: Part I: message en-
cryption and authentication procedures.
Request for Comments (Experimental)
RFC 1421, Internet Engineering Task
Force, Feb 1993. (Obsoletes RFC1113).

Brian A. LaMacchia and Andrew M.
Odlyzko. Computation of discrete log-

arithms in prime fields. Designs, Codes,
and Cryptography, 1:46-62, 1991.

G.M. Meyer. The PPP encryption con-
trol protocol (ECP). Internet draft;
work in progress, February 1995.

[NBS77]

[NBS80]

[Neu95]

[Pos82]

[PRS3]

[RS84]

[SHS93]

[SP388]

[Sun88]

[VTB95]

[Wie94]

NBS. Data encryption standard, Jan-
uary 1977. Federal Information Process-
ing Standards Publication 46.

NBS. DES modes of operation, Decem-
ber 1980. Federal Information Process-
ing Standards Publication §81.

Michael Neuman. Monitoring and con-
trolling suspicious activity in real-time

with Watcher, 1995. Draft.

J. Postel. Simple mail transfer protocol.
Request for Comments (Standard) RFC
821, Internet Engineering Task Force,
August 1982. Obsoletes RFC0788.

J. Postel and J. Reynolds. Telnet proto-
col specification. Request for Comments
(Standard) RFC 854, Internet Engineer-
ing Task Force, May 1983. Obsoletes
RFC0764.

Ronald L. Rivest and Adi Shamir. How
to expose an eavesdropper. Communica-

tions of the ACM, 27(4):393-395, 1984.

David R. Safford, David K. Hess, and
Douglas Lee Schales. Secure RPC au-
thentication (SRA) for TELNET and
FTP. 1In Proceedings of the Fourth
Useniz UNIX Security Symposium, pages
63-67, Santa Clara, CA, October 1993.

SDNS secure data networking system se-
curity protocol 3 (SP3). Technical Re-
port Revision 1.3, SDNS Protocol and
Signalling Working Group, SP3 Sub-
Group, July 12 1988.

RPC: remote
procedure call protocol specification ver-

Sun Microsystems, Inc.

sion 2. Request for Comments (Infor-
mational) RFC 1057, Internet Engineer-
ing Task Force, June 1988. Obsoletes
RFC1050.

David Vincenzetti, Stefano Taino, and
Fabio Bolognesi. STEL: Secure TEL-
net. In Proceedings of the Fifth Useniz
UNIX Security Symposium, Salt Lake
City, U'T, 1995. To appear.

Michael J. Wiener. Efficient DES
key search. Technical Report TR-
244, School of Computer Science, Car-
leton University, Ottawa, Canada, May
1994. Presented at the Rump Session of
Crypto ’93.

[Zim92]

Philip Zimmerman. PGP user’s guide,
September 1992.

