An Attack on the Interlock Protocol When Used

for Authentication

Steven M. Bellovin*
Michael Merrittf

February 4, 1993

Abstract

Exponential key exchange may be used to establish secure communi-
cations between two parties who do not share a private key. It fails in
the presence of an active wiretap, however. Davies and Price suggest use
of Shamir and Rivest’s “Interlock Protocol” to surmount this difficulty.
We demonstrate that an active attacker can, at the cost of a timeout
alarm, bypass the password exchange, and capture the passwords used.
Furthermore, if the attack is from a terminal or workstation attempting
to contact a computer, the attacker will have access before any alarm can
be sounded.

Keywords: cryptography, protocol, security, authentication, exponential key
exchange, Diffie-Hellman

*smb@research.att.com, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974.

tmischu@research.att.com, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill,
NJ 07974.



I Introduction

The exponential key exchange protocol[1] has been suggested as a form of public-
key cryptosystem. It is also useful if two parties wish to set up a secret con-
versation without prior arrangement, as the public keys are relatively easy to
generate.

The dialog works as follows. Let a and 3 be large, publicly-known numbers.
Suppose that A wishes to talk privately with B. Each side picks a random
number, Ag and Bg. The following messages are sent:

a?fmod B —
— oPrmodp.

At this point, A, who knows Ag, can calculate
(@PR)AR mod g = o787 mod g.

B can perform a similar calculation to obtain the shared key a4®B% mod 8. An
intruder cannot do the same, however. For example, in order to calculate Ag
from a4® mod 3, the eavesdropper must calculate the logarithm of a4% mod
in the field GF(). This is believed to be difficult, though notable progress has

been made of late, especially for small values of 8 [2].

ITI Active Wiretaps

As elegant as it is, exponential key exchange is vulnerable to active, “man in
the middle” attacks. That is, suppose an intruder Z can not only listen to
messages between A and B, but can also modify messages, delete messages, or
even generate totally new ones. In that case, Z can imitate B when talking to
A, and imitate A when talking to B:

a4fmod 8 —s
a?Fmodf —s
— oPrmodp
— aZr mod S.

At this point, A and Z can compute
(aAR)Z;? mod 8 = (aZ;?)AR mod 8 = arZr mod 8
while Z and B can compute

(@?7)Br mod B = (a®7)?% mod B = a?#P7 mod 3.



Let E4 (M) represent an encryption of M using the private key derived from
the exponential key exchange. For simplicity, we assume that the entire message
is encrypted as a single block. Now, suppose A sends a password P4 to B,
encrypted as E4 z/(Pa). Then Z can intercept and decrypt the message, obtain
Py, re-encrypt it with o?#Br mod 3 and send it on its way:

Es7/(Pa) —
EzB(Pa) —
— EzyB(PB)
— FE4 z/(Pp).

Here, B has received Ez g(Pa), decrypted and matched it against the stored
password for A, and responded with its own password, Pp; this, in turn, is
decrypted and re-encrypted by Z for transmission to A.

Continuing in this way, Z may eavesdrop on the entire conversation between
A and B, or substitute new messages to either recipient. Neither A nor B knows
that Z is intruding.

Davies and Price [3, page 222] describe a scheme by Shamir and Rivest
that is meant to surmount this problem if A and B share passwords P4 and
Pg. A and B encrypt their passwords using that key, producing E4 p(Pa) and
E4 (Pgp). Rather than transmitting those quantities intact, each party divides
the encrypted password into two halves, producing E4 g(Pa)(1l), Ea B(Pa)(2),
E4 B(Pg)(l), and E4 g(Pp)(2). They then exchange halves alternately:

—  E4B(PB)(1)
— E, B(Pg)(2).

Suppose, now, that Z is interfering in this dialog. In that case, A is really
sending (E4,z:/(Pa))(1) in the first message. But Z cannot decrypt E4 g(Pa)(1)
until £4 g(Pa)(2) arrives, and thus cannot re-encrypt it using Ez p. Thus, A
and B can detect the intrusion.

IIT The Attack

Assume that A represents a user of computer B, and that it is such access that
7 wishes to obtain. We demonstrate that the above algorithm still allows Z to
gain access to B.

Assume that 7 is sitting in the middle of the dialog shown above. Since Z



does not know Ppg, half of some arbitrary encryption is sent instead.

(Ea,z/(Pa))(l) —
—  (Eaz(P))(1)
(Ea,z/(Pa))(2) —

At this point, Z can combine the two halves of A’s encrypted password Py
and — knowing a4#%r mod # — can decrypt it, and continue the dialog with

(Ez,B(Pa))(l) —

—  (Ez,8(PB))(1)
(Ez,B(Pa))(2) —

— (E£2,8(PB))(2).

That is, Z has completed A’s half of the authentication procedure, as far as
B can tell.

The connection from Z to A may be dropped at this point. True artistry
demands Z should do this by simulating line noise or a network failure. It does
not matter much, however; Z has full access to B before A can sound any alarm.
(Recall that we are assuming that Z has full control of the communications
channel between A and B. If there is an auxiliary, unauthenticated channel
between the two parties, A might use it to yell for help. But care should be
taken, as false messages on that channel might be used for a denial of service
attack.) If A attempts to reconnect, Z can either continue the simulation of a
communications problem, or it can complete the authentication dialog. Note
that P4 and Pp are compromised at this point. If A attempts to reconnect,
Z can either continue the simulation of a communications problem, or it can
complete the authentication dialog with A, using Pp.

An obvious counter is to modify the dialog slightly so that B speaks first.
The user password P4 is much more sensitive than the host password Pg; it
would make sense for A to be assured that it was speaking to the genuine B
before transmitting a password. This, too, is insecure; Z can still break in to
B, though possibly for a shorter time before an alarm is raised.

The attack this time requires that Z set up a second, parallel connection to
B, using exponents Z' and B’. (In fact, it does not matter what the exponents
are here; Z and B will go through a separate exponential key exchange to
calculate them.) This second session is used to capture Pg:

— (Ezvp(PB))(1)
(Eznp (P2))(1) —
— (Ez0p(PB))(2).



Naturally, Z refrains from sending the second half of P» at this time. Instead,
the captured Ppg is used on the original connection to spoof A.

— (Eaz(PB))(1)
(Baz(Pa))(l) —

— (Eaz(PB))(2)
(Ba,z(Pa))(2) —

At this point, Z has captured P4 as well. This may be used to complete the
authentication dialog with B. Presumably, at some point B will get suspicious
that the dialog on the second channel has not been completed; even if a com-
munications problem is simulated, security alarms will likely be raised. It is not
likely, however, that A will be locked out instantly; as noted earlier, automatic
lockouts can be used for denial of service.

If two channels into B are not available, the same scheme works using succes-
sive calls from Z to Bj;in that case, however, an alarm will be sounded before Z
has completed the second connection. The scheme originally outlined provides
a period before the alarm, when the intruder has access to the system.

IV Alternatives

Davies has suggested[4] that validation of the passwords be done in parts. That
is, since A knows Pp and the negotiated encryption key, she also knows the two
halves of the encrypted message, and can validate them as they arrive. Thus,
when Z sends (E4, z/(P2))(1), it is apparent that the message does not contain
an encryption of Pg, so the reply of (E4, z:/(Pa))(2) will never be sent.

This strategy foils our attack. However, this requires that the unencrypted
messages contain, in addition to passwords, only information known to both par-
ties. In particular, nonce fields, unpredictable timestamps or random padding
cannot be used. Furthermore, it is common practice to avoid storing cleartext
versions of others’ passwords; rather, a one-way hash of the password is gen-
erally kept[5]. In this case, the encrypted password can only be verified when
both halves are received; half of the encrypted password is useless.

A different authentication protocol based on exponential key exchange is
given in [6]. Briefly, a shared secret key is used to encrypt the exponentials
before transmission. In addition to providing both authentication and secrecy,
this scheme guards against password-guessing attacks[5, 7, 8, 9]. Further, it can
be used with most public key cryptosystems, not just exponential key exchange.
It suffers from the same flaw as does Davies’ defense: it is not suitable for
situations where one-way hashing of passwords is used.

Another alternative is presented in [10]. Giinther presents an authentication
system that is also based on the discrete logarithm problem; in it, the user’s
identity is encoded into the public key. Thus, the secrecy negotiation protocol



itself yields the user’s identity. However, this scheme requires that the user store
a bulky secret key, rather than a simple password.

v

A Lesson

The original man-in-the-middle attack is countered by the protocol attributed
to Rivest and Shamir. As we have seen, that protocol in turn falls to a slightly
more complicated attack. Instead of considering specific attacks in designing

protocols, it may be much more fruitful to consider classes of attacks embodied
in specific adversarial assumptions [11, 12]. Certainly, no protocol should be
accepted purely on the basis of its defeating a single attack.

References

(1]

[9]

[10]

W. Diffie and M. E. Hellman, “New directions in cryptography,” [FEE
Transactions on Information Theory, vol. IT-11, pp. 644-654, November
1976.

B. A. LaMacchia and A. M. Odlyzko, “Computation of discrete logarithms
in prime fields,” Designs, Codes, and Cryptography, vol. 1, pp. 46-62, 1991.

D. W. Davies and W. L. Price, Security for Computer Networks. John
Wiley & Sons, second ed., 1989.

D. Davies, July 1990. Private conversation.

R. H. Morris and K. Thompson., “Unix password security,” Communica-

tions of the ACM, vol. 22, p. 594, November 1979.

S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-based
protocols secure against dictionary attacks,” in Proc. IEEE Computer Soci-
ety Symposium on Research in Security and Privacy, (Oakland), pp. 72-84,
May 1992.

F.T. Grampp and R. H. Morris, “Unix operating system security,” AT&T
Bell Laboratories Technical Journal, vol. 63, pp. 1649-1672, October 1984.

D. V. Klein, ““Foiling the cracker”: A survey of, and improvements to,
password security,” in Proceedings of the USENIX UNIX Security Work-
shop, (Portland), pp. 5-14, August 1990.

P. Leong and C. Tham, “Unix password encryption considered insecure,”

in Proc. Winter USENIX Conference, (Dallas), 1991.

C. G. Gunther, “An identity-based key-exchange protocol,” in Advances in
Cryptology: Furocrypt ’89, pp. 29-37, Springer-Verlag, 1990.



[11] R. DeMillo and M. Merritt, “Protocols for data security,” Computer,
vol. 16, pp. 39-50, February 1983.

[12] J. Moore, “Protocol failures in cryptosystems,” Procedings of the IEEE,
vol. 76, pp. 594-602, May 1988.



