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Abstract
Email privacy is of crucial importance. Existing email encryp-
tion approaches are comprehensive but seldom used due to
their complexity and inconvenience.We take a new approach
to simplify email encryption and improve its usability by im-
plementing receiver-controlled encryption: newly received
messages are transparently downloaded and encrypted to a
locally-generated key; the original message is then replaced.
To avoid the problem of moving a single private key between
devices, we implement per-device key pairs: only public keys
need be synchronized via a simple verification step. Com-
promising an email account or server only provides access
to encrypted emails. We implemented this scheme on sev-
eral platforms, showing it works with PGP and S/MIME, is
compatible with widely used mail clients and email services
including Gmail, has acceptable overhead, and that users
consider it intuitive and easy to use.
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1 Introduction
Email accounts and servers are an attractive target for ad-
versaries. They contain troves of valuable private informa-
tion dating to years back, yet are easy to compromise. Some
prominent examples include: the phishing attack on Hillary
Clinton’s top campaign advisor John Podesta [23], the 2016
email hack of one of Vladimir Putin’s top aides [44], the email
leaks of former Vice President candidate Sarah Palin and CIA
Director John Brennan [12, 39], and other similar cases [20].
These attacks targeted high profile individuals and organi-
zations to leak their emails and damage their reputations.
In the Podesta leaks, attackers perpetrated a spear-phishing
attack to obtain John Podesta’s Gmail login credentials, ac-
cess his emails, and leak them to WikiLeaks. Sarah Palin was

subjected to a simple password recovery and reset attack
which granted the attacker full access to her personal email
account on the Yahoo! Mail website. John Brennan’s AOL
web email account was compromised via social engineering.
Adversaries also sometimes seize entire email servers such
as in the cases of cock.li and TorMail [30, 41], or compromise
them, such as in the Sony Pictures email leaks [43].
The common thread is that a compromise exposes the

entire history of affected users’ emails after a single breach.
With the explosive growth in cloud storage, it is easy to
keep gigabytes of old emails at no cost. Gmail’s massive
storage capacity—up to 15 GB for free, or 30 TB for paid
options [16]—opens up the possibility of keeping email for-
ever. Consequently, users often email themselves to use their
inbox as backup storage for important information, thereby
exacerbating the cost of a compromise.

Existing secure email models are effective against attack-
ers but rarely used. Examples include Pretty Good Privacy
(PGP) [3], and Secure/Multipurpose Internet Mail Extensions
(S/MIME). Both are too complicated for most users because
all email correspondents must comprehend public key cryp-
tography. The current paradigm places too much of a burden
on senders who must correctly encrypt emails and manage
keys [36, 42]. The result is even technical users rarely encrypt
their email. End-to-end encryption for email seeks absolute
security at the expense of usability, creating a chasm be-
tween absolute security via encrypting all emails via PGP or
S/MIME, and protecting no emails at all.

We introduce an approach to encrypted email that address-
es the gaping void between unusable but absolute security,
and usable but no security. We change the problem from
sending encrypted emails to storing them since it is a us-
er’s history of emails that is most tantalizing to attackers.
Our goal is to mitigate the attacks often publicized in the
news where email account credentials or servers are compro-
mised. The attackers have access to emails stored on servers
but not individual devices. Most of the attacks are either
simplistic phishing attacks for email account credentials or
server breaches that include innocent users in the collateral
damage. All the affected emails would be protected had they
been encrypted prior to any breach using a key inaccessible
to the email service provider. We therefore seek a client-
side encrypted email solution that safeguards any emails
received prior to a compromise. Furthermore, such a defense
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must be usable for non-technical users, and compatible with
correspondents who do not use encrypted email.

We present Easy Email Encryption (E3) as the first step to
filling this void. E3 provides a client-side encrypt-on-receipt
mechanism that makes it easy for users as they do not need
to rely on public key infrastructure (PKI) or coordinate with
recipients. The onus is no longer on the sender to figure
out how to use PGP or S/MIME. Instead, email clients auto-
matically encrypt received email without user intervention.
E3 protects all emails received prior to any email account
or server compromise for the emails’ lifetime, with threat
models similar to those of more complex schemes such as
PGP and S/MIME; for ease of discussion we hereafter refer
to PGP and S/MIME email as end-to-end encrypted email.

E3 is designed to be compatible with existing IMAP servers
and IMAP clients to ease the adoption process. An E3 client
downloads messages from an IMAP server, encrypts them in
a standard format, and uploads the encrypted versions. The
original cleartext emails are then deleted from the server. No
changes to any IMAP servers are necessary. Users require
only a single E3 client program to perform the encryption.
Existing mail clients do not need to be modified and can be
used as-is alongside a separate E3 background app or add-on.
If desired, existing mail clients can be retrofitted with E3
instead of relying on a separate app or on an add-on.

Users are free to use their existing, unmodified mail clients
to read E3-encrypted email if they support standard encrypt-
ed email formats. The vast majority of email clients support
encrypted emails either natively or via add-ons. Other than
the added security benefits of encryption, all functionality
looks and feels the same as a typical email client, including
spam filtering and having robust client-side search capability.

Key management, including key recovery, is simplified by
a scheme we call per-device key (PDK) management which
provides significant benefits for the common email use case
of having two or more devices for accessing email, e.g. desk-
top and mobile device mail clients. Users with multiple de-
vices leverage PDK with no reliance on external services.
Users who truly only use a single device still benefit from
PDK’s key configuration and management capabilities, but
rely on free and reliable cloud storage for recovery. E3 as
a whole is a usable solution for encrypted email that pro-
tects a user’s history of emails while also providing a simple
platform-independent key management scheme.
E3 is easy to implement and use. We have implemented

it for multiple environments, including retrofitting existing
Android mail clients with E3 for use with mobile devices, im-
plementing an extension for the Google Chrome web brows-
er to use E3 as a Gmail web client, and implementing a
daemon-like Python client that allows users to use existing
unmodified mail clients. We tested that the Android and
Python prototypes work with popular email services, includ-
ing Gmail, Yahoo! Mail, and AOL Mail. We also quantified
the performance of E3 on Android. Our measurements show

that while E3 imposes a one-time cost for email encryption,
the total overhead is quite reasonable from a user perspec-
tive. Finally, we present the results of a user study for E3 that
show that users consider it simple, intuitive, and flexible.

2 Threat Model
The purpose of E3 is to protect all emails stored prior to any
email account or server compromise, with no software or pro-
tocol changes except for installing E3 itself on a recipient’s
devices. The primary risk we defend against is to stored mail
on the IMAP server. If the account or server is compromised,
all unencrypted mail is available to the attacker.
We thus guard against future compromise of the user’s

IMAP account or server. We assume that the IMAP account
and server are initially secure, and that at some later time,
one or both are compromised. We therefore assume that
email services are honest; the threat is external entities trying
to access email account data. If email service providers are
not honest, e.g. keeping separate copies of received emails,
then the platform is fundamentally insecure which is out of
scope. However, a server attack may occur after the server is
discarded by physically compromising the server’s disks [14];
few organizations erase old disks before disposal. We assume
the enemy is sophisticated but not at the level of an intelli-
gence agency, i.e., the enemy cannot break TLS.
We do not attempt to protect against compromise of the

user’s devices or mail clients. If those are compromised, the
private keys used by E3 are available to the attacker no
matter when the encryption takes place. Standard end-to-
end encrypted email makes the same assumption.

3 Usage Model
E3 works with any IMAP email service. To get started, a
user installs an E3 client that is either a separate app or
a full mail client. The latter may support E3 natively or
via an add-on. E3’s setup is similar to a normal mail client
which asks for the user’s email service and its credentials.
If we assume a user uses only one device to access email,
then once that device’s E3 mail client is setup, the client
will begin encrypting all email on receipt. The user then
continues using whatever email client he wants exactly as
before, including sending and receiving email, except that
the E3 client transparently encrypts emails on receipt. Mail
clients that support encrypted emails identify them with
visual indicators to avoid being too transparent [36] as it
should be obvious whether an email was encrypted or not.
Modern email users often use multiple devices to access

email, and E3 is specifically designed for and encourages
users to configure multiple devices with E3. To do so, users
participate in a simple, brief, and platform-independent two-
way verification process for each new device as summarized
in Figure 1. Suppose that a user’s initial E3 client is on his
smartphone, and now he wants to configure E3 on his laptop
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Figure 1. E3’s two-way verification process.

computer. The user wants the smartphone and laptop clients
to trust each other with email access, so they participate
in a two-way verification. The user performs the E3 client
setup process on the laptop, except it will show the user a
verification phrase at the end. The smartphone client detects
the laptop’s client and prompts the user with a choice of
several phrases on the smartphone and asks the user to select
the one that was displayed on the laptop. After selecting the
correct one, the user repeats to process with the laptop and
smartphone swapped; the smartphone displays a verification
phrase which the user must select correctly on the laptop.
This completes the two-way verification, and the smartphone
and laptop now trust updates from one another. If the user
wishes to add a third device, say a tablet, he performs the
two-way verification process with any of the previously
configured devices. If he verifies the tablet on his smartphone,
then his laptop can transitively trust the tablet via the phone.
If the user does not select the correct verification phrase

within a time limit, the verification process is canceled and
the user will need to restart the E3 verification process on
the new device. When the user succeeds in verifying a new
device, the user is informed that it will take some time for
any previously encrypted emails to become readable on the
new device. The reason is because these emails need to be
re-encrypted so that the new device can read them.

Importantly, users rarely set up new devices or mail clients,
so re-encrypting emails is an uncommon cost. Adding a new
device generally happens in the following situations: (1) a
user replaces an existing device, or (2) a user obtains an
entirely new device. If a replacement, then in many cases the
old device’s data is cloned to the new device so that neither
verification nor re-encryption is necessary. Case (2) is an
uncommon occurrence, but a new device means the user will
need to verify it and re-encrypt emails; however, any future
replacements will fall under case (1).

When a new device is added, the clients on all previously
added devices display a notice to the user that his emails
are being re-encrypted. The user has the option to cancel
this process and return the emails to their original state.

Upon cancellation, the client rolls back the work it thus
far completed. Similar logic is applied if the user wishes to
revoke a device from his E3 ecosystem. A user removes a
device by deleting it by name from any device configured
with E3. The remaining clients then re-encrypt all email to
exclude the deleted device.

A user may occasionally no longer be able to use a device,
because it has been damaged or is no longer operational.
If the user has multiple E3 clients as would commonly be
the case for users that have multiple devices to access email,
he can still access his E3 encrypted email on his remaining
device(s). If the user only had one device with E3, a backup
of the old device’s data can be simply cloned to a replace-
ment device to regain access to email on the replacement
device. With mobile devices which are more easily damaged,
backups are increasingly common. If it is desired to support
users who use only one E3 mail client device that is never
backed up, E3 can provide the user with a recovery password
which the user must save by printing it out or recording it
somewhere safe. Users use the recovery password on a new
E3 client to access to their emails. No recovery password is
needed for users who use multiple devices unless they fear
they may lose all of them simultaneously.
While most mail clients support encrypted email, one

exception is web browser clients such as the Gmail website
and other webmail services. Browser add-ons for encrypted
mail exist (and we have also written one), and it is reasonable
to expect native browser support if the demand is great
enough. For now, web browser extensions can integrate with
webmail services to decrypt E3-encrypted email.

E3 assumes that email should only be accessible from
trusted devices. Given the ubiquity of mobile devices and that
most users use them for accessing email [37], this assumption
is quite reasonable for modern users. E3 is not compatible
with using untrusted computers such as those at an Internet
cafe, nor should it be if users care about their email privacy
given that such computers may be compromised. Attempts
to use such untrusted computers to read email will not work;
they will only provide access to encrypted emails.
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Figure 2. Communications between an E3 mail client and
an IMAP server to encrypt email.

4 Architecture
The E3 architecture consists of two main components, an
encrypt on receipt mechanism and a per-device key (PDK)
architecture. For simplicity, we first describe the encrypt
on receipt mechanism using one E3-enabled device, then
describe how multiple devices are supported using the per-
device key (PDK) architecture.
Figure 2 presents a high-level view of E3’s encrypt on

receipt mechanism. An E3 mail client downloads an email,
encrypts it in either PGP or S/MIME format using a self-
generated keypair or X.509 certificate, and uploads the en-
crypted versionwhile deleting the original. For ease of discus-
sion we refer to PGP keys and X.509 certificates as keypairs
consisting of public and private keys. E3 builds on existing
protocols and encrypted email formats, simplifying its imple-
mentation and deployment. E3 leverages Internet Message
Access Protocol (IMAP) [8]. S/MIME implementations rely
on X.509 certificates and the S/MIME standard as document-
ed in RFC 5280 [7] and RFC 5751 [31]. PGP implementations
follow the OpenPGP standard in RFC 4880 [3].

4.1 Keypairs without PKI
Normally, public keys need to be signed by a trustworthy
entity or nobody will trust it. This forms the basis of PGP
webs of trust and X.509 public key infrastructure (PKI). We
hereafter refer to this general concept as PKI for convenience.
In E3, public keys are never shared with other people.

They are self-generated and self-signed, and require no PKI
for the user to understand. Previous work [42] has shown
that users find it confusing to correctly obtain and use public
keys. In contrast, an E3 user needs only self-signed keys, and
any public key exchanges among his devices are automated.

4.2 IMAP Support and Compatibility
Consider common email operations. A mail client downloads
a message using the IMAP FETCH command. To delete it, the

client uses the IMAP STORE command to mark it with the
\Deleted flag. IMAP EXPUNGE then purges email marked
for deletion. The user may compose and upload an email
using IMAP APPEND. These four IMAP commands, FETCH,
APPEND, STORE with \Deleted flag, and EXPUNGE, play
a key role in E3. We henceforth use DELETE as shorthand
for the STORE with \Deleted flag command.

Figure 2 shows how these four IMAP commands encrypt
email on receipt with existing IMAP servers. E3 is summa-
rized as downloading a message (FETCH), encrypting it,
uploading the ciphertext (APPEND), and deleting the clear-
text (DELETE and EXPUNGE). Finally, the client ensures
correctness by synchronizing with the server.

This series of commands works on any IMAP message. It
does not matter what mailbox or folder the message is in.
The same process is even applied to a user’s copies of his
sent emails which are appended to the IMAP server (these
appear as “Sent” emails to users). All these IMAP commands
execute in the background, decoupling them from the critical
path of reading email.
E3 requires multiple round-trip times (RTTs) with the

server because IMAP does not support message replace-
ment. Optimizations may be possible in the future. The pro-
posed REPLACE command [2] substitutes for the APPEND,
DELETE, and EXPUNGE commands. This RFC extension is
not yet supported. The REPLACE command would eliminate
the multiple RTTs associated with DELETE and EXPUNGE
thereby significantly improving performance when replac-
ing many small emails. This is because RTTs have a constant
cost that dominates the brief time it takes to encrypt and
replace small emails. In contrast, the RTTs account for a
small percentage of the total time for processing large emails
and are unnoticeable.
E3 uses approaches similar to existing IMAP clients in

dealing with race conditions since multiple clients may try
to encrypt the same message which could result in duplicat-
ed encrypted emails. Currently, the blessed way of achieving
pseudo-atomicity when modifying IMAP messages is to use
the IMAP CONDSTORE extension [26]. CONDSTORE is
supported by major IMAP email services and open source
servers, including Gmail and Dovecot. This extension re-
quires servers to maintain a last-modified sequence (mod-
sequence) number on messages which is returned to the
client. An E3 client which wishes to encrypt a message adds
a flag (either \Flagged or \E3Encrypting depending on cus-
tomflag support) to amessage using the UNCHANGEDSINCE
modifier with the IMAP STORE command so that it will only
succeed if the message has been unchanged; this also up-
dates the mod-sequence value of the message, so any other
clients who try to issue the same command will fail since
the message was already modified.

The flag and mod-sequence value act like a lock, thereby
alerting other clients that this message is being encrypted.
Then, the client with the lock can issue IMAP commands
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without racing others. One issue is the client may crash
before it completes its work and leave a dangling lock. A
basic solution is to use a heuristic based on a message’s
received timestamp. A client periodically scans the mailbox
for messages with the \E3Encrypting flag, and based on the
timestamp heuristic, determines if too much time has passed
since each message was received. For example, if a message
is unencrypted for three hours since it was received but has
the \E3Encrypting flag, the client may obtain the lock on
the message and encrypt it.

If CONDSTORE is not available, an alternative is to make
a best-effort using IMAP custom flags and custom IMAP fold-
ers. The strategy, like with CONDSTORE, is to mark a mes-
sage with a custom flag (keyword) entitled \E3Encrypting,
and to move it into an IMAP folder named E3-Temp. Then,
any E3 client that sees the E3 flag on a message in the special
temporary folder should not encrypt it. This does not rule
out race conditions entirely, but will certainly shrink the
window that it could occur within.

4.3 Ciphertext Format
E3 uses the widely supported OpenPGP message or S/MIME
Enveloped-Data formats depending on client preference.
While E3 can be implemented as a full standalone mail client,
it can also be implemented as a program that provides just
the encrypt on receipt mechanism. Users can then use exist-
ing unmodified mail clients that support S/MIME, including
Apple Mail, Mozilla Thunderbird, and Microsoft Outlook, to
access E3 mail in S/MIME format, assuming the E3 private
key is available on the device to both the encryption program
and the existing mail client. The same holds for PGP.

These formats only encrypt the body text, so all of the orig-
inal headers are maintained except for the Content-* headers
which are updated to ones appropriate for encrypted emails.
Since the Received timestamp header is unchanged, mail
clients can display messages in their original order. E3 also
adds a custom header, X-E3-ENCRYPTED, to distinguish E3
emails from other encrypted emails. This is useful for IMAP
servers which do not support custom flags or keywords.
E3 normally does not re-encrypt emails that are already

encrypted when received, i.e., when receiving email from
a sender using end-to-end encryption. However, there are
situations where re-encrypting emails is useful such as when
a crypto algorithm or key size is no longer secure. In this
case, E3 supports re-encrypting existing encrypted email to
a newer crypto standard.

E3’s encryption does not interfere with spam filters. Spam
filters often exist either on servers or clients. When they are
on the server, such as with Gmail, the mail service filters
spam emails before they are encrypted. For client-side spam
filters, the user’s mail client will detect spam messages and
move or delete them. However, since the client performs the
filtering, it can apply the filter before encryption, or decrypt
E3-encrypted messages to scan them for spam.

4.4 Search Capability
Searching is straightforward: index and store the decrypted
content of messages locally. This is compatible with existing
mail client local search, and provides full, fast local search-
ing. Storing messages locally is a common practice among
modern mail clients, and examples can be seen in Gmail on
Android, Mail on iOS, and Mozilla Thunderbird and Apple
Mail on desktops. While message content is stored locally in
the clear, many mail clients that support encryption already
do this. An option for the more security-conscious is to apply
full disk encryption in conjunction with device-wide secu-
rity features. An alternative is to store ciphertexts locally,
but this provides no real benefits since the key is also stored
locally, and would also interfere with local searching.
A limitation of encrypted email schemes is that unmod-

ified email servers cannot search the body content of en-
crypted emails. (Headers, including the Subject: and other
metadata fields, are searchable.) If the server can be modified,
SSARES [1] is a scheme for searchable encrypted email with-
out access to private keys, making it compatible with E3’s
threat model. For unmodified servers, the IMAP SEARCH
command cannot be used, so clients that search both local-
ly and on IMAP servers will only return results for local
search and remote metadata matches. On the other hand,
IMAP search is significantly slower than local search and
is often based on naive string matching which yields low
quality results. Thus, users often will not wait for IMAP
server search results in practice since local search queries
are nearly instant. Furthermore, many email clients such as
K-9 Mail only perform local search unless remote search is
specifically enabled or requested, which would provide the
exact same search capability with or without E3.

4.5 Key Management, Migration, and Recovery
E3 eliminates manual public key exchanges. This simplifies
the key management by removing half of it. What remains
is the problem of private keys when using multiple devices.
Traditional security best practices advise users to never trans-
port private keys because doing so is insecure. This advice
is almost never followed in practice because users often ac-
cess email from multiple devices, all of which need the same
private key when using common secure email usage models.

E3 returns to the traditional security advice of never trans-
porting private keys. In contrast tomost secure email schemes
which assume a user has a single private key, E3 asserts that
a user should have a unique private key for every device.
We call this the per-device key (PDK) scheme as depicted in
Figure 3. With PDK, a user does not need to move any private
keys among his devices. Instead, each of his clients automat-
ically makes available its public key to his other devices. The
result is that any E3 client can then encrypt the user’s emails
using the public keys from all of his devices. Consequently,
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Figure 3. The per-device key (PDK) architecture.

any of a user’s multiple E3 clients can encrypt emails while
making them readable on any other client. The principle is
similar to when a traditional PGP or S/MIME user encrypts
an email to multiple people. The email is not encrypted mul-
tiple times for each public key, but is encrypted only once
using a symmetric key which in turn is encrypted to each
public key. E3 takes this paradigm and applies it in a new
way by encrypting emails on receipt using every verified
public key belonging to the user. When a new key is added,
clients re-encrypt already-encrypted emails to the new keys.

PDK’s primary features are as follows:
1. Private keys never move or leave a device.
2. A private key is “revoked” by re-encrypting emails to

all public keys except for the revoked one.
3. Private key recovery, normally mitigated with private

key backups, is reduced to device data backup which
is easier. As long as one device is available, emails can
be decrypted without a recovery process.

4. Public keys are automatically distributed using the
email account.

5. Keys are self-generated and self-signed so users can
freely add new devices.

6. Private keys use local secure storage when available
without relying on a user password so there is no
password to target in phishing attacks.

E3 clients upload their public keys to the mailbox as ordi-
nary emails with the keys as attachments. Other E3 clients
detect these key emails and store the public keys locally.
Table 1 shows custom MIME headers used in E3 key emails
to support PDK. Invalid or missing headers (when they are
required) cause a key email to be rejected immediately. The
concert of these headers is used to support key verification.

Public keys in the user’s mailbox cannot be blindly trusted.
Clients must securely confirm whether a new public key
really belongs to the user, and ideally, the method to do
so should be compatible with any kind of device whether
a desktop or mobile one. The following solution satisfies
these requirements. A given client periodically scans for

Header Description
X-E3-NAME A custom name for this E3 public key.
X-E3-VERIFICATION The verification phrase as a space-separated string.
X-E3-TIMESTAMP The signed timestamp of when this key was uploaded.
X-E3-DIGEST The digest (fingerprint) of this E3 key.
X-E3-RESPONSE The digest of the key that this key is in response to.
X-E3-KEYS The public keys known to the uploader.
X-E3-DELETE The public key deleted from the uploader.
X-E3-SIGNATURE Signature of all fields using the uploader’s private key.

Table 1. Custom headers in uploaded E3 key emails.

new keys, and as a first heuristic, ensures that the sender
(i.e., the “From:” field) of any detected key email matches the
address of the account owner; any emails containing keys
from other senders are not accepted. However, this heuristic
alone is not enough to verify the key as an attackermay spoof
this field or gain access to the email account and upload a
malicious key with the correct sender address. We therefore
augment this check by requiring temporal proximity and a
two-way verification step. Temporal proximity means the
user has a limited window of time to accept and verify a
newly detected public key. Any keys which are not accepted
within the time window will expire.

Temporal proximity relies on verified and signed times-
tamps. A newly configured client uploads its public key along
with a signed timestamp obtained from services such as
Roughtime [15], and existing clients verify if the timestamp
is within the allowed time window and trustworthy. For
example, a client configured to only allow public keys up-
loaded within the last 60 seconds will reject any uploaded
public keys with a verified timestamp that is older than 60
seconds. The timestamp is verifiable since it is signed using
the Roughtime service’s certificate. As an additional measure,
clients rate limit the number of requests to add a new key.
For example, the client will only consider at most three key
requests in a period of five minutes. Any more than that are
suppressed, and a warning is shown to the user that unusual
behavior has been detected.
E3 also uses a two-way verification process with a ver-

ification phrase that is easy for humans to recognize and
match. When a new client uploads its key, it adds a random-
ly generated verification phrase to the key email which is
prominently displayed. The user then needs to confirm this
verification phrase on one of his existing E3 clients. Once
he completes the verification on any existing client, it will
display a second verification phrase. The user then needs to
confirm this second phrase on his new client to complete the
two-way verification.
The catch is that when the user confirms a verification

phrase, it must be selected from among two randomly gen-
erated incorrect phrases. The user must select the correct
verification phrase in order to verify the key. This multiple
choice confirmation reduces the chances of a user accidental-
ly accepting a key that isn’t his. The words in the phrases are
selected from a curated pool such as the PGP Word List [21].
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As shown in [11], this technique is effective and usable for
quickly authenticating identities even with only three words.
Users who speak other languages use word lists in their lan-
guage. Another option is to use a recognizable but randomly
selected or generated image. Further research is needed to
better understand what kinds of strings or images real users
can correctly recall and verify while making minimal errors.

To concretely visualize how adding and deleting E3 clients
works, we will describe the one device, two device, three
device, andn device cases for PDK. To represent uploaded key
emails, we use the notation KeyEmaild (Keyd , {h}) where d
is the device which uploaded the key email, Keyd is the
public key of the uploader, and {h} can be any of the values
shown in Table 1 with X-E3- removed for spacing reasons;
we also elide the required VERIFICATION and TIMESTAMP
headers but note that they are necessary in each KeyEmail
we describe. To denote what public keys a given device d
knows about, we use d[Keyd0,Keyd1, ...,Keydn].
One Device. Since there are no devices to synchronize

keys with, a user simply sets up an E3 client on his single
device and begins encrypting emails on receipt.

TwoDevices. Let us consider two devices,A and B, where
A is a device with E3 already configured on it, and a user
wants to add B to his E3 ecosystem. Thus, the initial state
of knowledge is A[KeyA] and B[KeyB ]. The user sets up an
E3 client on B and it uploads KeyEmailB (KeyB, {}), then
shows the user a verification phrase. Now device A detects
KeyEmailB and requests the user to verify it with the phrase
shown on device B. If the user succeeds, deviceA now knows
device B’s public key, but since KeyEmailB did not contain
X-E3-RESPONSE, device A knows it needs to upload its own
set of keys so that device B can learn about existing public
keys. Device A therefore uploads

KeyEmailA(KeyA, {RESPONSE[KeyB ],
KEYS[KeyA,KeyB ], SIGNATUREA}).

A then displays its own verification phrase to the user, which
he must verify on device B after it detects KeyEmailA. If
this second verification succeeds, now both devices A and
B know about their public keys and can trust future up-
dates from each other. The final state is A[KeyA,KeyB ] and
B[KeyB,KeyA].

Three Devices. The same process for two devices holds
for adding a new third device C because A and B trust each
other, so if C is verified and added to A, A will upload

KeyEmailA(KeyA, {RESPONSE[KeyC ],
KEYS[KeyA,KeyB,KeyC ], SIGNATUREA})

which B trusts because of the signature, so B can automat-
ically add KeyC to itself. Then once the user does the re-
sponse verification of A on C , C will trust A as well and
can add KeyB . So the final state is A[KeyA,KeyB,KeyC ],
B[KeyB,KeyA,KeyC ] and C[KeyC ,KeyA,KeyB ].

N Devices. Now consider a user who has built up his E3
ecosystem over time and has N − 1 devices already synchro-
nized with each other, and now he wishes to add device N .
The user completes the two-way verification process with
device N and any device K in 0, ...,N − 1. Then K automat-
ically distributes N ’s public key to every other device by
leveraging transitive trust because the other devices already
trust K . Since K is manually verified on device N by the user,
N can trust the keys that K provides.
Clients must re-encrypt all emails for new public keys,

but a user may wish to undo adding a new device. If the user
stops and reverses the re-encryption process, the client re-
processes the emails it re-encrypted, and re-encrypts them
again to the original set of keys. However, the now-defunct
key must be revoked first.
The general case of revocation is done via an advertised

deletion. When a user revokes a client, he deletes the key
by name from any client’s list of keys. The client which
performs the deletion announces this by uploading a signed
key email with the X-E3-DELETE header so that other clients
can also exclude the revoked one.

PDK achieves a streamlined key verification processwhere,
for every newly added key, the user only ensures that the
verification phrase matches the one he recognizes two times.
This is in contrast to key verification for end-to-end en-
crypted email which often relies on confusing public key
fingerprint matching, QR code scanning which is unavail-
able without a camera, and understanding of PKI. Although
E3 keys can be verified with these techniques, the higher
guarantee (and difficulty) they provide is unnecessary given
the unique environment in which E3 operates. Another issue
with end-to-end encrypted email is verifying the public key
of every new email correspondent. In E3, adding a new key
is a rare occurrence and only happens when configuring a
new mail client such as when getting a new device. As a side
note, advanced users may prefer fingerprint matching or
QR code scanning. These are only available as an advanced
option that is not enabled by default.
PDK’s recovery mechanism inherent to the multi-device

design is available to the majority of users who access email
using two or more devices. However, there may be users who
truly only ever access email with a single device. As discussed
in Section 3, for these users, a backup of the old device’s data
can be simply cloned to a replacement device to regain access
to email on the replacement device. For users that only one E3
mail client device that is never backed up, PDK key recovery
uses the traditional method of encrypting the user’s private
key with a password, presented as a “recovery key” to users,
and then storing the encrypted private key on a backup
device or in cloud storage. If stored in cloud storage, the
provider should be different from the email service provider.
For example, E3 clients configured for Google’s Gmail service
might store the private key on Dropbox but not Google
Drive. The key retrieval system adheres to best practices for
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secure credentials exchange as seen in the design of Securely
Available Credentials (SACRED) [18].

PDK is also compatiblewith re-encrypting emails to future-
proof them against changes in crypto standards. Algorithms
age, so ciphers and key sizes that are secure today may not
be in the future. PDK supports this use case since a user can
generate and add new keys while deleting old keys at will.
One avenue for future work is the problem of reading

email on public computers. In this case, users access their
confidential data on a fundamentally untrusted device which
cannot be trusted with private keys. This is a concern for all
encrypted email schemes, not just E3. Even though solutions
are technically possible, they are insecure due to the high risk
of unwrapping private keys in an untrusted environment.

4.6 E3 Configurations
While we have assumed that all E3 clients encrypt on receipt
and perform PDK, it is possible to also configure some E3
clients to only perform PDK when using multiple devices.
At least one E3 client needs to encrypt on receipt to protect
a user’s email. Clients which only perform PDK configure a
user’s device to decrypt emails and do not encrypt emails. An
example is a one-time use app or add-on which configures
a user’s existing, unmodified mail client with an E3 private
key. These clients only perform the key management func-
tionality described in Section 4.5 and none of the encryption,
and are a strict subset of E3 clients which do encrypt.

5 Security Analysis
E3 does not intend to be an end-to-end, maximum security
solution, but a strict improvement over the norm that is easy
to use and deploy. We sacrifice a small amount of security to
gain tremendous usability over existing secure email mod-
els. We henceforth show that E3 provides tangible security
benefits compared to no email encryption, and compare its
security with traditional end-to-end secure email.

E3 protects all emails for all of their lifetime as long as they
are encrypted before any email account or server compromise.
Standard end-to-end encryption does the same, but E3 does
so without the complexity of public key exchanges and PKI.
Like end-to-end encrypted email, E3 protects sent and

received mail assuming all correspondents use E3. Senders
can encrypt their sent email copies as stored on their IMAP
server. Unlike end-to-end encryption, which requires that
both the sender and receiver use it, E3 provides useful pro-
tection even if only one side uses it. If the sender uses it, his
emails that are encrypted before an attack are protected from
compromise of his email account or server. The same holds
for the receiver without loss of generality. In other words, E3
provides better protection than end-to-end encrypted email
for communications in which one party does not use email
encryption because end-to-end encryption cannot be used
and would therefore provide no protection at all.

If not all email correspondents use E3, it is possible for
an attacker to compromise the emails of any correspondent
not using E3 to expose email communications with one that
uses E3. Regardless, this property actually confers a benefit
to E3. E3 can be incrementally deployed since not all cor-
respondents require it. E3 also exhibits network effects: it
provides better security as more users use it.

Unlike end-to-end encrypted email, E3 requires addition-
al measures to protect against eavesdropping. Fortunately,
these measures are completely transparent to users. E3 uses
TLS or STARTTLS so there is no threat of eavesdropping if
TLS is secure. Furthermore, TLS and STARTTLS are support-
ed and encouraged by practically all major mail services.
Email may or may not be protected in transit between

SMTP (not IMAP) servers. SMTP server links are increasingly
protected by TLS; if not, the problem is out of scope. Services
such as Gmail flag emails that arrive via unprotected SMTP
connections. That said, attackers tapping such backbone
links is out of scope for E3 and in general is difficult for any
party but an intelligence agency.

After an email account or server is compromised, E3 can-
not protect newly arriving emails. This is a limitation com-
pared to end-to-end encryption which protects new emails
assuming all email correspondents use it. Nevertheless, end-
to-end encryption rarely sees actual use among users and
therefore provides no practical security for the majority of
the population. In contrast, E3’s ease of use makes it much
more likely to be adopted while providing a strict security
benefit. In a mailbox with just a few thousand messages,
compromise of new emails is a minuscule percentage of to-
tal emails. New emails are important, but it is clear that
encrypting the majority of emails is better than none.
Email account compromise happens in many ways but

it is primarily through credential or key compromise. That,
in turn, often happens because of user error, especially in
cases of (spear-)phishing. While devices do have OS-level
security features to help combat phishing, E3 by design also
provides a strong defense even though it does not password-
protect private keys since the device is assumed to be secure
(it is better to rely on OS level protections such as seen in
Apple Mail and Autocrypt [38], and also there is now no
password for an attacker to phish). The critical aspect is that
E3 makes informed decisions about private key storage and
management based on the user’s platform and device, so
users are never requested to manage their private keys in
contrast to PGP and S/MIME which require a user to actively
manage andmove around a private key. Thus, (non-technical)
users have no knowledge of where the E3 private key is
stored. This latter intrinsic property of E3 also raises the bar
for an attacker to trick a user into providing his private key
since the user does not know where it is. Attackers would
therefore need to provide detailed instructions unique to
platform and device for users to find the private key.
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One major obstacle in other secure email schemes is en-
suring availability of the private key on all devices. There
is no standard for secure, usable key transport and the mar-
ket is fragmented. In general, most solutions assume that
a user has a single keypair which is either copied to all his
devices, or carried on his person such as on a security token
or USB device. We have designed PDK as a departure from
these approaches. It provides a secure and usable scheme
that leverages users’ tendency to access email on multiple
devices, and also the inherent support for multiple recipients
in encrypted email formats.
An attacker may try to trick a user into accepting and

authenticating a malicious public key by sending a fake E3
key email to the user. If the user were to accept it, all emails
would be encrypted using the malicious key, allowing the
attacker to decrypt the user’s email if the account is ever
compromised. Therefore, PDK is only as strong as the key
authentication system used in conjunction with it. The first
line of defense is to ensure that uploaded keys came from the
user’s own email address. Keys attached to email from other
addresses are rejected. However, an attacker may spoof the
sender address or have access to the email account allowing
him to craft legitimate emails with the correct sender. We
therefore rely on temporal proximity such that an attacker
would need to strike literally minutes or even seconds before
the user generates a new key. Otherwise, the uploaded key
would be rejected for being too old if encountered by the
target at a later time. This is similar to time-based one-time
password schemes as seen in two-factor authentication, e.g.,
RSA security tokens and Google Authenticator.
An attacker without access to the mailbox needs to also

guess the correct verification phrase. An attacker with ac-
cess to the mailbox could wait for the user to upload a new
key, duplicate the key email but attach his malicious key
instead, and delete the real key email. This would allow the
attacker to construct a key email with the correct verifica-
tion phrase, and this may go unnoticed by the user and his
other E3 clients. However, this attack requires immediate
temporal proximity, i.e., as soon as the user uploads a new
key, and moreover, the client that performed the key upload
can detect this attack even if other clients cannot. To do this,
the uploading client polls the server to see if the key email it
uploaded was deleted or moved, or if another key email with
the same phrase was uploaded. The client can distinguish the
real email from a fake one in any case simply by referencing
the real key email’s IMAP UID which is generated by the
IMAP server, not the client. As soon as the client detects an
issue, it warns the user that an attack may be occurring.

Another possible attack is to try to exploit E3’s automatic
public key distribution approach by either trying to propa-
gate a malicious key to valid clients, or trying to delete valid
clients. To propagate a malicious key addition or deletion,
an adversary could upload a fake key email for either case. A
fake key addition email would not be verified by a user, and

thus the attack would fail. A fake key deletion email would
not be accepted by any valid clients because the signature
(X-E3-SIGNATURE) would be incorrect.

An adversary may resort to a denial-of-service attack and
send many fake keys to a user in hopes the user will make a
mistake and accidentally verify a malicious key. To address
this, clients rate limit requests to add new keys and show a
warning to the user. As a final measure, clients also immedi-
ately discard keys and any on-going confirmation prompts
from any key emails with duplicated verification phrases.
These checks alone suffice to exclude most attacks. On

top of these key verification checks unique to E3, we option-
ally support traditional methods for verifying public keys
including fingerprint string matching and QR code-based
fingerprint verification. However, these methods are only be
available to advanced users and are not enabled by default.
E3 considers servers and devices that are malicious from

the beginning as out of scope. E3 cannot protect against an
IMAP server that is run by a dishonest service provider. This
then begs the question of whether popular email services can
be trusted. As a case study, Google’s retention policy [17]
states that when a user requests a deletion, Google imme-
diately begins deleting that data from all its systems, but it
may take some time for the data to be completely removed
from every internal Google server. At the least, the data is no
longer accessible from user-facing interfaces such as Gmail
thus preventing any external adversaries from gaining access
to deleted emails. Google clearly states that it does delete
data completely, so if it were to do otherwise, it would be
subject to US law [5, 6] which prohibits “deceptive practices”
by any entity engaging in commerce. Similar laws apply in
other regions as well.

E3 also does not protect against compromise of the user’s
devices or mail clients, but neither does end-to-end encrypt-
ed email. Similarly, if a user’s device is stolen, E3 cannot
protect his email. However, many devices are password-
protected with data encrypted in local storage, and have
remote wipe functionality. In all cases, E3 provides a strict
security benefit, and makes security no worse than the cur-
rent common practice of no email encryption.

6 Implementation
To demonstrate that E3 is easy to implement, we built four
different E3 prototypes for various platforms: a K-9 S/MIME
client, a K-9 PGP client, a Python encryption client, and a
Google Chrome extension.
We implemented E3 in K-9 Mail, a popular open-source

Android mail client, using S/MIME. K-9 Mail’s developers
by design include no crypto libraries and offload crypto to
separate crypto provider applications. However, K-9 has no
S/MIME support since no such provider for S/MIME cur-
rently exists. Our K-9 S/MIME implementation therefore
includes the Spongy Castle [32] crypto library and performs
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all key generation and management on its own. K-9 S/MIME
represents a worst case scenario where nearly email crypto
functionality is implemented from scratch. Excluding third
party libraries such as Spongy Castle, which adds 8.6K lines
of code (LOC), our K-9 S/MIME implementation only added
roughly 2.5K LOC. The entire K-9 codebase is around 210K
LOC, excluding XML code which adds another 200K LOC,
thus suggesting that E3 comparatively represents a modest
amount of complexity. We also implemented a more opti-
mized E3 K-9 S/MIME version by replacing Spongy Castle
with precompiled OpenSSL libraries to leverage hardware
encryption support on Android devices. While there was
no change to the E3 code needed, the OpenSSL libraries are
substantially larger than Spongy Castle, roughly 390K LOC.
Although Android includes its own OpenSSL as a system
library, the version included is heavily modified and strips
many features including the S/MIME functions required for
our implementation.
We also implemented E3 in K-9 Mail using PGP by re-

lying on the OpenKeychain Android app, which is both
a keychain and crypto provider. K-9 offloads all PGP and
key operations to OpenKeychain which exposes an exter-
nal cross-application API, so it was not necessary to add a
crypto library to K-9. We modified K-9 Mail and OpenKey-
chain to support E3. We added an API call to OpenKeychain
(OpenPGP-API) for storing E3 keys, and changes to make
OpenKeychain verify and recognize emails which have been
self-signed by the email recipient as opposed to the standard
PGP use case where it verifies signatures based on the email
sender. Our E3 K-9 PGP client had nicer UI features compared
to the K-9 S/MIME client, adding 3.3K LOC, with much of the
additions being UI boilerplate code. Our changes to OpenK-
eychain were about 250 LOC, while the entire OpenKeychain
codebase is 590K LOC, excluding 124K LOC of XML.Without
the need for additional crypto libraries, the total amount of
additional code to support E3 was only 3.6K LOC out of the
over a million LOC required for K-9 and OpenKeychain.

We implemented a Python E3 daemon forWindows, Linux,
and macOS that generates an E3 keypair and encrypts on
receipt, but does not currently automatically add the private
key for use with existing mail clients; users must manually
perform this step, so the daemon is currently intended for
use by more technical users. The implementation is only
1K LOC. We sketch out what automatically adding the key
to mail clients would look like on different platforms. On
macOS and iOS, we can leverage the system Keychain which
the Apple Mail and iOS Mail clients already integrate with.
The Python app can add its E3 keypair to the Keychain with
an ACL tailored for the targeted mail clients [9]. On Android,
the KeyChain API [10] stores system-wide keypairs and can
be used in a manner similar to Apple’s Keychain. However,
Android clients that do not rely on the KeyChain API will
require modifications; for example, OpenKeychain must be
modified to allow an app to add an E3 private key to it, then
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Table 2. Tested servers and their compatibility with E3.

existing PGP clients can seamlessly use the key. OnWindows,
the E3 client can generate a PKCS12 key file to import into
Windows’ certificate store which is used by the Outlook mail
client. For clients such as Mozilla Thunderbird that do not
rely on the certificate store, users can install an E3 add-on.
We implemented a Google Chrome extension to inter-

face with the Gmail website and support reading E3 en-
crypted emails and key management. This extension was
a proof of concept to show that reading E3 email on web
mail clients is possible and practical, but does not perform
encrypt on receipt. It is about 750 LOC plus 7.5K LOC for
external Javascript libraries for crypto and other important
functionality. The extension requests access to the user’s
Gmail API to process raw emails instead of scraping Gmail’s
DOM. When a user loads an encrypted email in Gmail, the
extension checks if it can be decrypted, fetches the email,
decrypts it, and injects its contents into the page. The exten-
sion uses the Gmail API to also perform the necessary key
management functionality for E3. However, Google Chrome
by design provides no secure storage whether for extension
data or browser cookie data. It instead relies on its own and
OS security features to protect sensitive data. Thus, we store
the E3 keypair in Chrome’s local storage.

7 Experimental Results
We verify that E3 works with existing IMAP services, mea-
sure its performance overhead, and evaluate its usability with
real users. We used K-9 S/MIME for performance testing, and
K-9 PGP for usability testing.

7.1 Compatibility and Interoperability
To verify that E3 is compatible with existing IMAP and
S/MIME systems, we tested our prototypes on several of
the most popular commercial and open-source email servers.
Table 2 shows the results of our compatibility testing. E3
worked seamlessly with all IMAP email services tested. We
also checked for IMAP CONDSTORE and REPLACE sup-
port with the former enabling better IMAP atomicity, and
the latter enabling better performance. We also verified that
unmodified S/MIME mail clients, including Apple Mail, and
Thunderbird, could be used to read E3-encrypted email.

7.2 Performance
Wemeasured E3’s performance on mobile devices because of
the popularity of mobile email and to provide a conservative
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Figure 4. Time spent for the one-time “encrypt/synchronize”
compared to the cleartext download. Points right of the line
are emails with a JPG.

Figure 5. Normalized time spent for the one-time “encryp-
t/synchronize” relative to the cleartext download (not pictured).
Points right of the line are JPG emails.

Figure 6. Expected time for the one-time “encrypt/synchro-
nize” with REPLACE compared to the cleartext download.
Points right of the line are JPG emails.

Figure 7. Normalized expected time for “encrypt/synchro-
nize” with REPLACE relative to the cleartext download (not
pictured). Points right of the line are JPG emails.

measure as they are resource constrained. We used a Huawei
Honor 5X (8-core Cortex-A53 with 2 GB RAM) smartphone
running Android 6.0.1. We compare the performance of our
E3 K-9 S/MIME client against the standard K-9 Mail client.
Both versions were instrumented to obtain measurements.
The E3 K-9 client used OpenSSL 1.1.0b, and the S/MIME
emails used Cryptographic Message Syntax (CMS) with 128-
bit AES CBC for compatibility reasons. All experiments were
conducted using Gmail accounts populated with the same
email content, and aWiFi connection to a small business fiber
optic network.We chose to use a real email service with a typ-
ical Internet connection to better understand performance
with real limitations, such as asymmetrical download/upload
speeds to the Gmail service. To account for variability, each
measurement was repeated 30 times, the three lowest and
highest outliers were discarded, and an average was taken
over the remaining measurements.
We considered email operations where E3 imposes addi-

tional work over a standard email client. We did not measure

searching as it has no overhead compared to a standard mail
client. Wemeasured receiving a new cleartext email in which
E3 downloads, encrypts, and replaces it at the server with
the encrypted version, followed by a quick synchronize.

We used a range of email content sizes from 100 B to 12.5
MB. 12.5 MB is the maximum because when encrypted, it
increases in size to about 24.7 MB due to limitations of the
MIME format. Popular services such as Gmail enforce a 25
MB size limit. Emails of size 100 B to 1 MB were two-part
MIME messages with a plain/text and html/text part.
Larger emails were two-part MIME messages with a one
byte plain/text part, and an attached JPG file.

7.2.1 Encrypt and Synchronize
Figure 4 shows the time it takes to encrypt email and replace
it on the server, and synchronize the client and server. The
plot labeled “Total Encrypt-Sync” includes: Encryption, AP-
PEND, DELETE and EXPUNGE, and Synchronize. Figure 4
also shows the time to initially synchronize and download
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the original cleartext email. This is strictly not part of E3, but
provides a basis to show the relative cost of E3 compared to
a standard client. The time to download the cleartext email
was the same for both E3 and unmodified K-9.

Before discussing the results, we highlight two important
points. First, the overhead of encrypt/synchronize is a one-
time cost. Once a message is encrypted and uploaded, it does
not need to be processed again. Second, operations run in
the background so the user is unaffected.

Figure 4 depicts the encrypt/synchronize time in seconds
for each email size. Although the encrypt/sync time is 6× to
11× the time to synchronize cleartext emails, the overhead is
not visible to users as it is processed in background threads.
Figure 5 shows the same encrypt/sync measurements as

Figure 4, but normalized to the cost of downloading the
original cleartext email. This shows a breakdown of the rela-
tive cost of each part labeled: Encrypt, which encrypts the
message; APPEND, which uploads the encrypted message;
DELETE/EXPUNGE, which deletes and expunges the cleart-
ext message from the server; and Synchronize, which verifies
client-server consistency. The components are stacked so
that each line is cumulative and the area between lines is
the overhead for the component. For example, the total nor-
malized overhead for 1600 B emails is 8× the initial cleartext
email download, comprising of Synchronize (25%), DELETE/-
EXPUNGE (40%), APPEND (30%), and Encrypt (5%).

Encrypting is brief and generally takes no more time than
downloading cleartext email. The cost is constant for emails
smaller than 102,400 B, then grows linearly in proportion
to size. This suggests that for small emails, encryption is
dominated by initialization which includes generating the
IV and encrypting the AES key. Once size grows beyond a
critical mass, encryption time increases as well.
For small emails, the primary overhead is DELETE/EX-

PUNGE’s multiple RTTs which are significant relative to a
short APPEND time. To mitigate this overhead, clients can
issue a single DELETE and EXPUNGE for batches of emails.
For larger emails, APPEND (upload) dominates for two rea-
sons. First, uploading to Gmail was slower than downloading
which magnifies the APPEND overhead. Second, the Gmail
server supports Deflate/Gzip compression, and the cleartext
compresses well. In contrast, ciphertexts are indistinguish-
able from random bits so they cannot be compressed. Thus,
E3 APPENDs the full message size. However, the effects are
lost for content that is incompressible. This is the case for
the emails larger than 1 MB since they contained a single
JPG (incompressible) image; they consequently exhibit less
overhead compared to the text emails.
The remaining overhead is due to Synchronize, which

appears substantial for small messages. This involves ver-
ifying client-server consistency, updating the UI to show
progress, and processing any pending commands. This con-
stant overhead—less than a quarter of a second—is magnified
for smaller emails, but becomes negligible for larger ones.

IMAP currently does not support replacing a message in
a single operation. The proposed IMAP REPLACE exten-
sion [2] would eliminate the DELETE/EXPUNGE, so RE-
PLACE’s overhead will resemble APPEND alone. We approx-
imate this by taking Figure 4 and removing DELETE/EX-
PUNGE. This leaves Encrypt and APPEND as visible in Fig-
ure 6. Normalized performance can be seen in Figure 7. Like
Figure 5, Figure 7 is stacked so that each line is cumulative
and the area between lines is the overhead for the compo-
nent. The reduction in the time for the worst case—small
emails—is almost half.

7.3 Usability
After its initial configuration, E3 by default works transpar-
ently to the user. The user thus does nothing different from
using a regular mail client. As a result, E3’s usability is the
same as a regular mail client for everyday email usage. The
main difference with E3 versus a regular mail client involves
the initial setup of E3 before a user can start sending and
receiving emails. We therefore focus on the usability of the
mail client setup.
We administered an IRB-approved1 user study with nine

participants who used and compared our E3 K-9 PGP client
versus an unmodified K-9 client with and without PGP. Par-
ticipants used three devices we provided to them in each
session: a Nexus 7 Android tablet, a Huawei Honor 5X, and
a Samsung Galaxy S7. Each user was also supplied with an
empty Gmail account. All participants had some experience
with mobile device mail clients. They consisted of six non-
technical users aged 31 to 60, and two technical users aged 21
to 30. The non-technical users all worked in blue-collar occu-
pations or were self-employed. The technical users worked
or had worked in technology, and one was a Ph.D student
who specializes in computer security and mobile computing.
Both had never used PGP but were familiar with its design.
The participants volunteered in 60 minute sessions in

which they role-played as a tax accountant using email to
request a client’s tax forms. The 60 minute session comprised
three 20 minute sessions, each devoted to using vanilla K-9,
E3 K-9 PGP, or K-9 with PGP. During each 20 minute ses-
sion, we instructed the user to configure the selected mail
client with a Gmail account then send and receive emails to
obtain tax forms from three separate people. More specifi-
cally, the user first set up the respective email client with
an empty Gmail account on one of the three mobile devices,
requested a tax form from the first person, and verified the
response was encrypted (for E3 and PGP) by checking for
the visual encryption flag indicator on the K-9 client. Upon
successfully completing the first email exchange, users then
configured a second device with the same Gmail account,
which essentially tested E3 and PGP’s key management. E3

1The Institutional Review Board (IRB) is the United States’ approach to an
ethics committee that oversees human subjects testing.
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K-9 8 81.25 14.88 62.50 70.00 76.25 96.25 100.00
E3 8 74.38 18.84 47.50 60.00 76.25 90.63 97.50

PGP 8 41.25 12.03 27.50 27.50 45.00 50.00 57.50
Table 3. System Usability Scale summarized scores.

required completing the two-way verification to distribute
E3’s public keys, and PGP required transferring their single
private key. If successful, users then requested the tax form
from the second person. This was then repeated for the third
device and person.
We provided users with a visual setup guide for both E3

and PGP, and they could ask the study coordinator for help
with specific errors (for example, if they unknowingly made
a typo or didn’t know how to go to the home screen), but we
provided no in-depth help. Our reasoning was to strike a bal-
ance between providing consistent help to all users for both
solutions while also preventing cases where users would get
stuck on a simple mistake unrelated to the study goals. To
mitigate the effects of short-term memory on survey results,
we randomized the order of the email clients. To avoid prim-
ing participants for favorable responses, we explained our
research purpose only after the surveys had been completed.

After participants completed their tasks or reached the 20
minute limit per client, they completed the System Usability
Scale (SUS) [27], an industry-standard questionnaire also
used in many similar studies [33–36], for the system they
had just used. At the end of the study, participants completed
14 additional survey questions specific to our research, and a
final free-form question requesting any comments. To ensure
that participants actually understood each email solution
they used, the study coordinator explained each system prior
to completing the 14 additional survey questions.
The summarized SUS scores are presented in Table 3. A

higher score means better usability. The results for K-9 and
E3 were quite close while K-9 PGP received remarkably low
ratings. This suggests that users felt that E3 was almost
as easy to use as K-9, while PGP was significantly worse.
All users except the one technical user who specializes in
computer security and mobile computing failed to complete
K-9 PGP’s tasks in the time limit even with copious help. The
pain point in PGP where users struggled was the private key
management when they had to transfer their PGP keypair to
their other devices. On the other hand, all users succeeded
in every instructed step for E3 K-9 PGP in 10 to 15 minutes.
The average completion time for K-9 was 8 minutes.

We also asked users to compare the email solutions which
we summarize in Table 4. Responses are on a scale of 1
(Strongly Disagree) to 5 (Strongly Agree). Subjects in general
agreed that E3 was easier to use than PGP, but E3 still intro-
duced noticeable extra setup time compared to K-9. For many
of these questions, users choose a score of 3 despite giving

# Question (1 = Strongly Disagree, 5 = Strongly Agree) Mean Std. Min. Med. Max

31 I found it easy to use K-9. 4.50 0.55 4 4.5 5

32 I found it easy to use K-9 with PGP. 2.17 0.75 1 2 3

33 I found it easy to use K-9 with E3. 3.83 0.98 3 3.5 5

34 I could see myself using K-9 on a regular basis. 4.00 0.89 3 4 5

35 I could see myself using E3 on a regular basis. 3.83 0.75 3 4 5

36 I could see myself using PGP on a regular basis. 2.00 0.89 1 2 3

37 I thought E3 takes too long to set up each time on
a new device.

2.00 0.89 1 2 3

38 I thought PGP takes too long to set up each time
on a new device.

3.67 1.21 2 3.5 5

39 I thought that E3 was easier to use than PGP. 4.17 0.98 3 4.5 5

40 I thought that using the QR code scanner was
harder than verifying a three word phrase.

3.50 1.22 2 4 5

41 I thought that transferring my key in PGP was
harder than verifying a three word phrase in E3

4.17 0.98 3 4.5 5

42 The extra security with E3 is worth the extra steps
compared to regular email.

4.17 0.98 3 4.5 5

43 The extra security with PGP is worth the extra
steps compared to regular email.

2.50 0.84 1 3 3

44 The extra security with PGP is worth the extra
steps compared to E3.

2.00 0.63 1 2 3

Table 4. Summarized scores for added survey questions.
(Questions are abbreviated for spacing reasons.)

similar usability scores for K-9 and E3 as seen in Table 3.
This suggests that another factor unrelated to usability in-
fluenced their responses to our custom questions. The most
likely culprit is that most of the non-technical users did not
consider themselves important enough to use encryption.
They thus tended to be indifferent and responded with the
middle-ground score of 3 for any question concerning the
encrypted email solutions.
Free responses included saying “PGP sucks” and “I had

no idea what I was doing with [PGP].” Several subjects com-
mented on how much easier E3’s two-way verification was
compared to PGP’s key exchange and private key import/ex-
port. Most users felt unimportant enough to use encryption,
but could still see the value in having an easier to use email
encryption solution for people who do handle sensitive data.
It is important to note that our user study places a large

emphasis on configuring email clients, which is a relatively
infrequent occurrence. Furthermore, it is not uncommon for
non-technical users to ask others, technical support in the
context of an enterprise organization or customer support
when purchasing a device, for assistance in setting up a
device. The fact that the main usability difference between E3
and vanilla email is in the client configuration and that there
is no difference for sending and receiving email suggests that
E3 usability is likely to be even better in practice.
We draw these conclusions: (1) E3 is easy to use even

for non-technical users. (2) E3 is much more usable and
intuitive than PGP. (3) PGP is too unwieldy to actually be
used. Overall, our user study results were very positive in
favor of E3, but further studies with more users and a wider
range of activities would be illuminating.
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8 Related Work
The seminal “Why Johnny Can’t Encrypt” paper illuminated
the confusing process of encrypting email and showed how
inaccessible PGP is to average users [42]. They found that
correctly sending encrypted email in an end-to-end encrypt-
ed email setting is outstandingly difficult.
Many works following “Johnny” have tried to tackle the

problem of end-to-end encrypted email by attempting to
make the process easier or more transparent. STREAM [13]
uses SMTP/POP proxies which opportunistically encrypt
email by finding keys or generating them on the fly, but key
management is problematic. Verifying keys involves out-of-
band commnuincation such as phone calls, and delivering
keys requires users to know how to extract keys from email,
install them, and use them. STEED [22] extends the IMAP
standard to support transparent end-to-end encryption, but
requires modified clients and servers, and does not address
key management at all. Pwm [36] and Pwm 2.0 [34] attempt
to make end-to-end encryption transparent by integrating
with popular mail providers and relying on a third-party
identity-based encryption (IBE) server to manage keys, but
users authenticate to the IBE server via their email account
which does not protect against compromised accounts. Con-
fidante [24] leverages users’ ubiquitous use of social media
accounts to ease public key management and verification via
a third-party service. It however relies on users being able
to correctly identify social media accounts.
Various commercial services that provide end-to-end en-

cryption try to address the key management directly by
taking a walled garden approach. Lavabit [25], Posteo [28],
and Tutanota [40] create closed platforms where the service
handles all key management on its servers, but users are
restricted to encrypting messages only to other users of the
same platform or to redirecting recipients to the service’s
website to gain access to an encrypted file. Services such as
Lavabit maintain master keys which could decrypt all emails,
making them vulnerable to compromises and subpoenas.
Autocrypt [38] is a decentralized and incrementally de-

ployable system for distributing public keys to support end-
to-end encryption by making public key management more
usable. Only clients need to bemodified to support Autocrypt.
Autocrypt includes the sender’s public key in an email and
an indicator whether the sender prefers encryption. The re-
ceiver replies in the same manner, including his public key in
the email and an indicator whether encryption is preferred.
Autocrypt thereafter will send encrypted email between the
two parties if any of three criteria are satisfied: the sender
requests encryption, the received email was encrypted, or
all parties explicitly prefer encryption. Autocrypt does not
encrypt all of a user’s email, for example an email from some-
one who does not prefer encryption. Given that Autocrypt
use remains limited, it may not protect a substantial portion

of a user’s emails if a compromise occurs. This is in con-
trast to E3, which will protect all of user’s email before a
compromise occurs. E3 could be used to complement Au-
tocrypt, most obviously by encrypting plaintext emails with
non-Autocrypt correspondents. Another critical difference
is that Autocrypt eases PGP public key distribution but does
not address private key management and has no solution for
making it easy to read encrypted email on multiple devices.
E3’s encrypt on receipt approach has been proposed us-

ing other mechanisms. Most examples modify one’s Mail
Transfer Agent or Mail Delivery Agent to encrypt emails
before delivering them to the client [4, 19], but this is too
complicated for non-technical users. Posteo [29] provides
support for encrypting emails on receipt, but their approach
is server-side and only works on their servers. Unlike E3,
none of these approaches work with existing unmodified
IMAP servers and clients, and none of them address the issue
of client-side key management.

9 Conclusions
Easy Email Encryption (E3) introduces new client-side en-
crypt-on-receipt and per-device keys (PDK) mechanisms
compatible with the existing IMAP standard and servers. E3
email clients automatically encrypt received email without
user intervention, making it easy for users to protect the con-
fidentiality of all emails received prior to any email account
or server compromise. E3 uses keys that are self-generated
and self-signed, and PDK makes it easy to use them to access
encrypted email across multiple devices. Users no longer
need to understand or rely on public key infrastructure, co-
ordinate with recipients, or figure out how to use PGP or
S/MIME. We show that E3 is easy to implement on a vari-
ety of platforms including Android, Windows, Linux, and
even Google Chrome, and show that it works with popular
IMAP-based email services including Gmail, Yahoo! Mail,
AOL, and Yandex Mail. Our user study results show that real
users, even non-technical ones, consider E3 easy to use even
when compared to using regular unecrypted email clients
and vastly easier to use over the state of the art for PGP. Our
measurements using E3 with Gmail services show that per-
formance overheads are modest and acceptable in practice.
Almost exactly 20 years ago, Johnny was unable to en-

crypt. In the current modern era, the explosive growth of
ubiquitous and always-on, always-connected mobile devices
has provided the necessary foundation for putting a new
and usable spin on the idea of receiver-controlled encryp-
tion. Johnny could not encrypt in his time, but Joanie in the
modern age certainly can.
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