A “Bump in the Stack” Encryptor for MS-DOS Systems

David A. Wagner*
daw@cs.berkeley.edu
U. of California at Berkeley
Berkeley, CA

Abstract

Most implementations of IP security are deeply en-
twined in the source of of the protocol stack. However,
such source code is not readily available for MS-DOS
systems. We implemented a version using the packet
driver interface. Our module sits between the gemeric
FEthernet driver and the hardware driver; it emulates
each to the other. Most of the code is straightforward;
in a few places, though, we were forced to compensate
for inadequate interface definitions.

1 Introduction

The Internet Engineering Task Force (IETF) is in
the process of adopting standards for IP-layer encryp-
tion and authentication (IPSEC) [3, 1, 2]. Not surpris-
ingly, most of the original implementations are being
developed for various flavors of the UNix! operating
system. While this is good—indeed, we are primarily
UNIX system users ourselves—much of the world feels
differently, and prefers MS-DOS? systems. For many
reasons, it seemed desirable to develop an IPSEC im-
plementation for a MS-DOS system.

Our immediate need was for an “E.T. call home”
version of IPSEC. We did not need general function-
ality, and most of the conversations would be between
a laptop running MS-DOS and our firewall. This al-
lowed us to make a number of simplifications, espe-
ically in the area of key management (Section 5).

The immediate problem we faced, of course, was
that we did not have source code to the TCP /IP stack

*Work was done while at AT&T Bell Laboratories.
LUNIX is a registered trademark of X/Open.
2MS-DOS is a registered trademark of Microsoft.

Copyright (©1996 Institute of FElectrical and Electronics
Engineers. Reprinted from The Proceedings of the 1996
Symposium on Network and Distributed Systems Security.
This material s posted here with permission of the IEEE.
Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution must be ob-
tained from the IEFEE by sending a blank email message
to info.pub.permission@iece.org.

By choosing to view this document, you agree to all provi-
stons of the copyright laws protecting it.

Steven M. Bellovin
smb@research.att.com
AT&T Bell Laboratories

Murray Hill, NJ 07974

Application
A

TCP

IPSEC

Hardware
Driver

Figure 1: The protocol stack with IPSEC included.
This is an implementation diagram; the IPSEC mod-
ule includes some IP functionality.



1P 1P 1P
ESP AH AH
AH TCP 1P
TCP user data TCP
user data user data

Figure 2: The layout of different types of secure IP
packets.

we were running (PC/TCP 3.103 from FTP Software).
Accordingly, we chose to implement our IPSEC mod-
ule as a device driver, entirely below IP (Figure 1).
This also gave us a considerable degree of indepen-
dence from the precise version of the protocol stack;
so long as the interface remains reasonably constant,
our implementation should continue to work.

PC/TCP supports three different device driver in-
terfaces: NDIS, ODI, and the packet driver. NDIS
is from Microsoft, and will probably be the dominant
standard in the future. ODI was developed by Nov-
ell for their network products. John Romkey (then
of FTP Software) invented the packet driver [4]. De-
spite their internal differences, all three have the same
purposes—to permit network drivers to be developed
independently of the the protocol stacks, and to sup-
port multiple stacks—and we could have used any of
the three. We opted to use the packet driver inter-
face because source code was available for a number
of drivers, and such samples are always valuable, even
with the clearest of specifications. But the techniques
we used are applicable to almost any such driver, even
for radically different operating systems.

Other TCP/IP stacks support the packet driver in-
terface as well, though sometimes only through an
NDIS-to-packet driver shim layer. Our implementa-
tion will probably work with these as well, though
perhaps with minor changes; there are a large variety
of calls to the interface, and we have only implemented
the ones we actually needed. (Indeed, as is discussed
in Section 4, we wish that PC/TCP used more of the
interface.)

2 The IP Security Architecture

IP security is implemented as a set of protocols that
sit above IP. These protocols are used for authentica-
tion only (AH), encryption (ESP), or IP within TP

3PC/TCP is a trademark of FTP Software.

(IP-IP). Each of these headers contains a field denot-
ing the type of the next protocol, as shown in Figure 2.

Security services can be provided from host to host,
host to gateway, or gateway to gateway. In the latter
two cases, the nested IP header is used to denote for-
warding to the ultimate destination.

Each security header contains a Security Parameter
Index (SPI), sometimes known as a Security Associa-
tion Identifier. The SPI is an arbitrary integer; it is
used as an index to a table with keying information,
cryptographic algorithm selections, etc. The receiver
specifies the SPI to be used for packets sent to it; a
typical conversation will have two SPIs, one for each
direction.

It is up to each host to define its security policy.
That is, it must specify the necessary grade of secrecy
and/or authentication that is required when talking to
any of its peers. No security at all is perfectly valid,
and will long be the default case for most machines.
In general, applications—and in particular servers—
need to know the security properties of their connec-
tions; for our setup—manually controlled, and effec-
tively client-only—this is not an issue.

A variety of cryptographic algorithms are defined
[9, 8]; for our prototype, we have implemented just
one, an authentication-only mechanism using MD5
[12] and a shared secret key. Future versions will likely
include DES [11] and triple DES [7].

3 Implementation Details

We implemented our IPSEC module as a Termi-
nate and Stay Resident (TSR) module. Such programs
are not deleted from main memory when they exit;
instead, the memory area remains allocated and the
contents undisturbed.

The module is purely a packet driver from above.
When talking to the real hardware packet driver be-
low, it appears to be the generic Ethernet driver. Calls
that are not relevant to IPSEC, such as ARP trans-
missions or receptions, are passed straight through.
Although in principle any sort of device driver could
live below IPSEC, our current implementation as-
sumes an Ethernet driver. An obvious extension would
be PPP compatability, though encryption interacts
poorly with modem-based compression and the au-
thentication header would interfere with TCP header
compression [5].

3.1 Output Processing

When the IPSEC module receives a packet from
above, it must look at the destination address, build
an IPSEC header, perform the necessary security op-
erations (authentication and/or encryption), deter-
mine the IP address of the endpoint of the crypto-
graphic association, and re-invoke IP to route the
packet. A device driver does not have that luxury;
it cannot hand IP a packet as if it were a transport
protocol. Accordingly, our module emulates IP and
builds its own new IP header.

With one exception, this emulation is not particu-
larly difficult; IP is a simple protocol, especially for
transmission. The one difficult matter is routing: how
do we find the IP address of the next hop. A very gen-
eral IPSEC implementation might have to solve this



problem; in reality, though, there is a simple answer:
we assume that the new endpoint is along the same
path as the ultimate destination, and hence shares the
same next hop. If we are not using tunnel mode, the
situation is even simpler: the new endpoint will be the
same as the ultimate destination. We therefore make
the simplifying assumption that the original next-hop
address is still valid, and do not perform another rout-
ing operation or ARP query. An alternative would be
to add that information to the keying table; this would
handle the oddball cases, albeit at the expense of more
configuration overhead.

The biggest problem in output processing comes
when the new packet is larger than the MTU of the un-
derlying device driver. This is discussed in Section 4.

3.2 Input Packet Processing

When an input packet arrives, the source address
is examined to see if security is required when talk-
ing to that peer. If such filtering were not done, an
enemy could inject unauthenticated packets into what
should be a secure connection. Valid packets, or pack-
ets from a source for which security is not configured,
are passed up the stack.

If the IP layer will forward packets—that is, if it
will act as a router—there is a subtle danger to be
wary of. Assume that an enemy sends some host H
a packet claiming to be from H, but addressed to a
different host. Upon forwarding, the packet could be
treated as if it were generated on H, and will be given
H’s cryptographic fingerprint. This allows the attacker
to forge cryptographically authenticated packets from
H to any of its peers. To defend against this attack,
an IPSEC module must examine the source and des-
tination addresses of all packets it receives. This is
especially difficult if nested tunnel headers are used.

A better solution would be to ensure that crypto-
graphic processing takes place only on packets orig-
inating on the local machine. However, this cannot
be done with any sort of outboard encryptor, whether
implemented as a separate box or via our techniques.
It would seem, then, that routers—which we define
as any IP stack that will forward packets, regardless
of the stack’s primary function—should not use out-
board cryptographic modules for protection, unless
the address-checking described above is implemented.

3.3 Policy Management

The behavior of IPSEC is controlled by two tables,
the policy table and the security association table.
The two concepts are separate, and should not be
confused. Ultimately, the security association table
will be controlled by a key management module; the
policy module, though, is an administrative concept,
and will always be specified manually. Both tables are
read from files at system startup time; either can be
changed at any time via a utility program.

The policy table specifies what classes of transforms
should be applied to outgoing packets, and what is
expected on incoming packets. Authentication can be
configured for individual hosts or for groups of hosts.
Separate policies can be set for input and output; it is
thus possible to send unauthenticated packets to some
destinations, but require that the other end send only

authenticated packets. The default behavior for both
transmission and reception can be specified indepen-
dently.

The current prototype has a rather simplistic im-
plementation. A production version will need more
clearly defined semantics for the search order. It will
also need port number matching as well, to permit key
management exchanges in the absence of an existing
key.

The security association table is much more
straightforward. For each destination, a security
transform, SPI, and key are specified. For each SPI,
the transform, key, and IP address are given. The lat-
ter field must match what is in the received packet.
Currently, we do not attempt to support multicast
packets.

4 Fragmentation and MTU

Security has its costs; apart from the obvious issue
of CPU time, the security headers take up space in the
packet. This is problematic, as TCP will often try to
send maximum-size packets, leaving us no headroom.
An ideal solution would be to tell IP and TCP that
the device has a smaller MTU than the 1500 bytes pre-
scribed for Ethernet. Indeed, the packet driver speci-
fication includes such a call. Unfortunately, PC/TCP
doesn’t use it.

The solution? we implemented was to use the Path
MTU mechanism [10]. When a too-large packet is re-
ceived from IP, the IPSEC module crafts an ICMP
error message indicating the proper maximum mes-
sage size. TCP—which has no way of knowing that
the message was generated locally, rather than from a
distant router—will then reduce its idea of the maxi-
mum packet size and retransmit. This exchange will
take place for each new connection (and can even hap-
pen at intervals during the lifetime of an existing con-
nection), but the amount of overhead isn’t high. Un-
fortunately, as of this writing the code isn’t working
properly yet; it is unclear if it is a bug in our code or
in PC/TCP.

The alternative would be to have IPSEC fragment
large outgoing packets. While this isn’t difficult per se,
it creates two other problems: the general difficulties
of fragmented packets [6], and the need to reassemble
such packets in the receiving IPSEC module.

The latter is more of a nuisance, but one that a
general implementation cannot avoid. Fragmentation
can occur anywhere along the path, not just on the
sending side; this means that a receiver must be pre-
pared to reassemble fragments, since it is not possible
to authenticate a partial packet. Ideally, we could let
IP do the reassembly—it already has the ability to do
so—and pass the complete datagram on to IPSEC for
decryption; unfortunately, this cannot be done in a
clean fashion (Figure 3). While a request for IPSEC
services is denoted by a special protocol number in the
IP header, and IP is generally able to support an arbi-
trary number of higher-level protocols, this interface

4This idea was suggested by Frank Kastenholz of FTP
Software.



Application

g3}
=+
=
@
=
=
@
=+

Hardware
Driver

Figure 3: An alternative (but difficult) implementa-
tion that lives above and below IP. The dashed line
denotes the processing path for fragmented packets;
the dotted line shows re-entry to IP for re-routing.

is not open on PC/TCP. There is no standard compa-
rable to the packet driver for this connection, and we
did not wish to reverse-engineer the existing programs
that used it (i.e., ping).

If we really wanted to avoid the need for fragment
reassembly code, we could try to send Path MTU mes-
sages to the remote host. But this is probably fruit-
less; at this time, very few hosts would honor such a
request.

A third possibility would be to ignore the issue;
most connections are off-net, which generally implies
an MTU of 576 bytes or less, and most modern links
support larger packet sizes. But such assumptions
tend to bite you when you least expect it, and we still
need to authenticate local connections. Furthermore,
there is one very important case where small MTUs
are used: dial-up machines.

For TCP, an ugly implementation could detect the
SYN packets and fiddle with the maximum segment
size option. Apart from esthetic questions, it leave
unsolved the problem of UDP.

We could try to specify the proper MTU during the
key management process. While probably a good idea,
it doesn’t solve the problem of informing the higher
layers of the protocol stack.

The only solution, then, is to reimplement frag-
ment reassembly in the IPSEC module. While not
tremendously clean, it works, and we were able to steal
much of the code from 4.4Bsp. The mbuf code had to
be stripped out, though, since our module uses flat
buffers.

Fragmentation poses another difficulty. Suppose
you can induce a host to send a packet large enough
that the host itself fragments it before transmission.
Put a fake transport header at the fragmentation
boundary. The security layer will calculate the ap-
propriate authentication data for this fragment. Note
that it cannot include the fragmentation data in the
calculations, since this may change en route. This
fragment can now be retransmitted, with a new IP
header that doesn’t indicate fragmentation. The au-
thentication check will succeed and the fake transport
header will be believed, thus permitting injection of
phony data into a connection. (Other security issues
relating to fragmentation are discussed in [13].)

The only remaining problem for the attacker is how
to induce the host to send such a packet. MS-DOS
computers are not multi-user machines, which elimi-
nates one threat, but services such as ping will do the
trick.

Our solution to this security threat is to use encap-
sulation mode on all fragments passed to IPSEC. That
is, we transmit the original IP header inside the au-
thentication header, and create a new IP header that
has no mention of fragmentation. Upon receipt, the
authentication header will be stripped off, and the en-
closed IP fragment passed up the stack for reassembly
by IP itself.

5 Key Management

At development time, no key management proto-
col had been defined for IPSEC, though there were
a number of candidates. Accordingly, we did not try



Table 1: IPSEC performance measurements doing

FTP.
no IPSEC (vanilla PC/TCP)

188 KB/sec
IPSEC module, no authentication 135 KB/sec
IPSEC with MD5 MAC 65 KB/sec

to implement anything more sophisticated than man-
ual keying. Our intent, though, is to make key man-
agement a completely manual process, even when a
protocol is available. That is, before trying to com-
municate via IPSEC, the user must explicit invoke a
command to negotiate and load session keys. Though
a bit awkward for a general-purpose IPSEC module,
it works well for our “call home” model. Additionally,
keying information can be read at boot time from a
configuration file.

Trying to do automated key management would re-
quire that the IPSEC module send and receive TCP
and/or UDP messages. Apart from the problem of re-
cursion, TSR routines are not allowed to issue normal
MS-DOS system calls. Another way to handle this
would be to pass the keying request to a user-level
program via an up-call; unfortunately, such things are
difficult to implement, since the MS-DOS system does
not support multitasking.

A new key table is downloaded via a special call
to IPSEC packet driver. Rather than passing the new
table to the driver via this call, we have the driver pass
back its address, and let the key management program
overwrite it manually: storage protection isn’t an issue
for MS-DOS computers. An additional benefit of this
scheme is that the same call can be used by a table
dump utility.

6 Performance

Not surprisingly, there is a performance cost asso-
ciated with IPSEC (Table 1). On FTP tests run be-
tween two 90 megahertz Pentium systems® with 3C509
Ethernet cards, the mere presence of the IPSEC mod-
ule caused a performance hit of about 30%. This can
be attributed to data copying and the extra context
switch. The latter will be especially serious in the
future, since packet drivers run in 16-bit mode, and
newer stacks will run in 32-bit mode.

Adding MD5 authentication caused a further 50%
drop in throughput. However, these tests were run
with the default small window size; this undoubtedly
hurt performance considerably. Using a larger window
would have run afoul of the fragmentation issue.

The import of these numbers for long-haul connec-
tions is unclear. Even the slowest speed is about a
third the capacity of a DS1 line, and few real connec-
tions approach even that figure.

7 Conclusions

The usual approach to implementing IP security is
to modify the source code. By exploiting open inter-
faces, we were able to implement the necessary func-

5Pentium is a registered trademark of Intel

tionality without having source code to the protocol
stack. This is an old technique in some parts of our
profession, but much Internet work has been done by
UNIX system programmers who have been spoiled by
easy access to source code.

Our implementation isn’t perfect. There is some
duplication of functions and some awkward tech-
niques. These were needed where the interface defini-
tion wasn’t quite sufficient. While it’s impossible for
system designers to anticipate all contingencies, it’s a
good idea to remember two rules: first, eschew magic
numbers, such as a 1500 byte MTU; second, where
two or three objects of some type can exist, make it
easy for outsiders to add a fourth or a fifth.

It isn’t yet clear to us how a computer using authen-
ticated IP should interact with our firewall. Should
the user be constrained to our current mode of oper-
ation: telnet to a gateway, followed by token-based
authentication? Should the user be allowed to tun-
nel through to an end system, using host-to-router
mode authentication? Can we use the current chal-
lenge/response devices for key distribution? What if
the user’s machine has been penetrated? Are we leav-
ing ourselves open to attack? More and more MS-
DOS systems run servers of various types, leaving
them more susceptible to remote penetration. (To
those who claim that good cryptography obviates
the need for firewalls, we note that a private, well-
authenticated connection to a hacker is of little benefit
if the software on our end of the call is buggy enough
to grant shell access to our systems.)

Another way to view our code is as a host-based
emulation of a true “bump in the cord” security unit.
The thorny issues we faced, such as MTU, fragment
reassembly, and spoofing, would apply equally well to
any front-end box. This suggests the need for ar-
chitectural improvements to IP hosts to make them
“security-ready”.

8 Acknowledgments

This work would have been much more difficult
were it not for the copious amount of freely usable
source code available. Some of it we studied; other
sections were included verbatim. We used sections
of code from 4.4BsD, the Crynwyr/Clarkson packet
driver collection, NCSA telnet, and MD5. Addition-
ally, much was learned by studying Robert Glenn’s
IPSEC code for BSD/OS.

References

[1] R. Atkinson. IP authentication header. Request
for Comments (Proposed Standard) RFC 1826,
Internet Engineering Task Force, August 1995.

[2] R. Atkinson. IP encapsulating security pay-
load (ESP). Request for Comments (Proposed
Standard) RFC 1827, Internet Engineering Task
Force, August 1995.

[3] R. Atkinson. Security architecture for the inter-
net protocol. Request for Comments (Proposed
Standard) RFC 1825, Internet Engineering Task
Force, August 1995.



(4]
(5]

(9]

[10]

[11]

[12]

[13]

FTP. PC/TCP packet driver specification, June
1994. Available from ftp.ftp.com.

V. Jacobson. Compressing TCP/IP headers for
low-speed serial links. Request for Comments
(Proposed Standard) RFC 1144, Internet Engi-
neering Task Force, February 1990.

C. Kent and J. Mogul. Fragmentation considered
harmful. In Proceedings of SIGCOMM °87, pages
390401, August 1987.

Ralph C. Merkle and Martin Hellman. On the
security of multiple encryption. Communications
of the ACM, 24(7):465-467, July 1981.

P. Metzger, P. Karn, and W. Simpson. The ESP
DES-CBC transform. Request for Comments
(Proposed Standard) RFC 1829, Internet Engi-
neering Task Force, August 1995.

P. Metzger and W. Simpson. IP authentication
using keyed MD5. Request for Comments (Pro-
posed Standard) RFC 1828, Internet Engineering
Task Force, August 1995.

J. Mogul and S. Deering. Path MTU discovery.
Request for Comments (Draft Standard) RFC
1191, Internet Engineering Task Force, Novem-
ber 1990.

NBS. Data encryption standard, January 1977.
Federal Information Processing Standards Publi-
cation 46.

R. Rivest. The MD5 message-digest algo-
rithm. Request for Comments (Informational)
RFC 1321, Internet Engineering Task Force,
April 1992.

P. Ziemba, D. Reed, and P. Traina. Security con-
siderations for IP fragment filtering. Request for
Comments RFC 1858, Internet Engineering Task
Force, October 1995.



