
Anonymous Publish-Subscribe Systems

Binh Vo and Steven Bellovin

Columbia University, 116th St. and Broadway, New York, NY 10025

abstract

Publish-subscribe protocols offer a unique means of data distribution, that has
many applications for distributed systems. These protocols enable message de-
livery based on subscription rather than specific addressing; meaning a message
is addressed by a subject string rather than to a specific recipient. Recipients
may then subscribe to subjects they are interested in receiving using a variety
of parameters, and receive these messages immediately without having to poll
for them. This format is a natural match for anonymous delivery systems: sys-
tems that enable users to send messages without revealing their identity. These
systems are an area of great interest, ranging from messaging relays like Tor,
to publication systems like FreeHaven. However, existing systems do not allow
delivery based on topics, a mechanism which is a natural match for anony-
mous communication since it is not addressed based on identity. We concretely
describe the properties of and propose a system that allows publish-subscribe
based delivery, while protecting the identities of both the publishers and sub-
scribers from each other, from outside parties, and from entities that handle the
implementation of the system.

1 Introduction

In the publish-subscribe model, messages can be published to topics, rather than
addressed to recipients. These are then multicast to the entire set of recipients
that have previously subscribed to those topics. These topics can be anything
from a set of specific match strings to ranged attributes on a multi-dimensional
array. These types of messaging systems are typically implemented using a third
party who manages subscriptions and acts as a relay between publishers and
subscribers, though distributed systems have been implemented which allow for
greater scalability.

This paradigm adds a different kind of flexibility in that senders and re-
cipients are decoupled and can operate without even knowing of each other’s
existence. This can be a more suitable mode of operation for many kinds of sys-
tems. For example, a chat or newsgroup application is more cleanly implemented
where the speaker does not have to obtain and maintain an enumerated list of all
people who are interested in what he has to say. In a normal addressing system,
he would have to be aware of all the people he means to send messages to. In a
publish-subscribe system, he only needs to publish his message on a topic, and all
interested readers can subscribe to those topics without either party knowing of



the other. Another possible application is a search protocol in a document pub-
lishing and distribution system, where data providers subscribe to topics they
provide and queriers publish messages indicating their interest. Data providers
would then become aware of all the people searching for their content and could
initiate a transfer. Another system that would benefit from publish-subscribe
would be a notification system to mobile users that are interested in events on a
geographical basis. This could be implemented using ranged attribute subscrip-
tions filled in via GPS coordinates. Any system where addressing is preferably
based upon the nature of the content rather than knowledge of the recipient can
benefit from a publish-subscribe architecture.

Another area of interest is anonymous communication systems, wherein users
can contact each other and exchange data while protecting their identities from
each other and from outside parties. These include messaging systems and relays
such as mixnets [4, 11] and onion routing networks [13], and publishing systems
like FreeHaven [9] and FreeNet [6]. Anonymous relays allow users to send ad-
dressed messages while protecting their identities from the recipients and against
all third parties. They may also allow users to create pseudonymous ”addresses”
that they can announce, whereby others may contact them without knowing who
their true identities. Anonymous publishing systems allow users to store and ad-
vertise documents online that can then be freely accessed by the public without
revealing the identity of the authors. They may also protect the identities of
readers who are either accessing these documents or using search protocols that
allow them to find documents of interest to them.

We introduce a new system that achieves anonymous publish-subscription.
We do so by creating a network of multi-cast nodes using an existing point-
to-point anonymous communication network (such as an onion-routing network
like TOR [13]). This supports a push publish-subscribe architecture: messages
will be delivered to recipients without needing to be polled or requested on an
individual basis. It also supports publication topics as string matches, integer
ranges, and multi-attribute ranges mapping integer values to multiple labels.

1.1 Why merge publish-subscribe with anonymous communication?

Anonymous communication systems are of clear value for protecting sensitive
data or interests. However, to date, we are unaware of systems that work on
a publish-subscribe basis while providing any sort of clearly defined anonymity
guarantees for sender or receiver. Although there are some systems that claim
to provide anonymous publish/subscribe, neither the difficulty of identifying
publishers nor the efficiency of the system is thoroughly analyzed. This is unfor-
tunate, since the publish-subscribe paradigm is a natural match for anonymous
communication. In many scenarios which require anonymous communication,
there are two separate problems: how to establish relationships between sender
and receiver when neither knows the other’s identity, and then how to anony-
mously deliver their messages. Many anonymous communication systems do not
address the first problem of how to establish anonymous relationships where
meaningful communication should occur; this is left as outside the scope of the



system. But by its very nature, publish-subscribe aims to support communi-
cation based on content rather than by identity, and users need not concern
themselves with the details of finding the entities they aim to communicate with
anonymously. It thus naturally solves this issue.

Such a system could for example allow for newsgroups and real-time chat
applications that discuss sensitive topics like medical conditions or radical po-
litical movements such as discussions between members of Falun Gong or Arab
Spring. Since in a group discussion a user is already sending messages without
requiring awareness of the recipients, it is a natural step to provide a guarantee
that this identity remain anonymous.

These applications could not be efficiently met by existing anonymous com-
munication systems, which do not support any form of multi-cast and work based
on known-recipient addressing. Nor could they be met by anonymous publish-
ing systems, which work on a pull-basis rather than a push-basis. This makes
them unsuitable for real-time applications. Publish-subscribe systems naturally
provide flexibility that is likely to be useful for any type of anonymous commu-
nication need, since they do not require assumptions about participant identity
by other participants.

1.2 Paper Organization

In Section 2 we overview related work on the subject. Section 3 concretely states
the framework that our systems aim to fulfill. We present the system design
itself and compare it to naive approaches in Section 4. Implementation details
and performance results are given in Section 5. We summarize our results in
Section 6.

2 Related Work

Non-anonymous publish subscribe systems were developed a great deal by TIBCO,
who developed the Rendezvous system [14], which introduced wildcard topic
matching, used a de-centralized architecture which supported topic priority in
routing. The most currently used publish-subscribe system is PubSubHubbub
[10]. PubSubHubbub is an extension of the RSS web feed protocol, but improves
upon it by implementing the delivery of messages using a push mechanism.
In other words, feed updates are pushed from the sender immediately to the
receivers rather than waiting for them to poll the feed, making it a publish-
subscribe protocol. Similarly, there are cloud-based content distribution mech-
anisms designed to ensure secure, but not identity-hidden, delivery of messages
[3, 7, 15]. None of these systems, however, provide any anonymity protection.
They are intended to be used between openly known clients.

There are numerous anonymous data distribution systems besides those that
work on a publish-subscribe basis. Tor provides a simple anonymous routing
network that relays messages through a number of nodes with layered encryption,
such that unless an attacker can either compromise all nodes on the path or



monitor both the beginning and end, the sender cannot be identified [13]. Since
messages are addressed, this is not a publish-subscribe system of delivery. Also,
the recipient’s identity is not protected. One thing a publish-subscribe system
handles well that an addressed system does not is broadcast delivery of messages
to a wide audience. There are anonymous systems that do this, but not using a
publish-subscribe model.

One well known system for widescale document distribution is the Free Haven
project [9], a peer-to-peer file-sharing system. In this system, users can pub-
lish documents, making them freely available without revealing their identities.
It is based on a community of servers that distribute storage of split shares
of published documents. Recipients broadcast requests throughout the storage
space, and those with pieces of interest return them encrypted. The documents
are associated with private key encryption pairs to maintain ownership through
updates and deletions.

Another similar system is FreeNet [6], also a peer-to-peer file-sharing sys-
tem, but one with routed document requests rather than universally broadcast
ones. Documents are associated with hashes of descriptive keyword strings, and
migrated over time so that similar documents tend to migrate to geographically
close servers on the network topology. Queries are then sent on a hill-climbing
search over these lexical hashes. It is more scalable, and has more flexible doc-
ument retrieval (keyword search rather than simple unique-name lookup) than
FreeHaven, however it does not protect recipient identity, only that of the doc-
ument owners.

Finally, another approach to anonymous distribution is TOR hidden services
[13]. These allow a user to create a pseudonymous address through which they
may be reached anonymously through the TOR network. Other users can then
initiate connections through this address without revealing their own identities
or knowing who they are contacting behind the pseudonymous address. These
are not inherently multi-cast systems; each recipient must establish an individual
connection, which creates additional load on the server when many clients are
involved.

In all of these anonymous distribution systems, since users must expressly
request messages, they are not push systems and furthermore do not allow for
continuous messages based upon a topic. They also are not generally intended for
low-latency delivery of messages; a distributor stores a message to the network
whereupon they will be fetched by an interested party at a later time. They are
thus not publish-subscribe systems. Document publishing systems such as these
are suited to applications where a sender wishes to send a limited amount of data
in a short time to be made available over a much longer time period. Publish-
subscribe systems, however, are better suited to applications where there will
be an ongoing stream of data relating to a specific subject, and where messages
have a shorter lifespan.

The only existing publish-subscribe system we are aware of that aims to pro-
vide anonymity is by Datta et al. [1, 8]. They propose a routing system based
on maintaining multiple layers of weakly connected directed acyclic graphs. In



this system, one or more sink nodes, which may change over time, become dis-
semination points receiving all publications and forwarding them to subscribers.
However, anonymity is provided only by stating that the node a receiver gets a
message from may not be the original publisher. However, an adversary would
still know that that node could possibly be an original publisher. Without prob-
abilistic analysis of this possibility, it is difficult to say how well protected the
publishers actually are. Also, no mention is made as to how difficult it is to
identify subscribers in the system. Further, the system is neither analyzed for
efficiency and scalability, nor implemented, so it is unclear at what cost this
protection comes. There is no guarantee that the shape of the directed graphs
that forms over very large networks scales in an efficient manner.

3 Anonymous Publish-subscribe

Our system will aim to provide publish-subscribe functionality while protecting
sender and receiver identities. This means that in terms of functionality, it will
allow users to subscribe and unsubscribe to topics, and publish to topics, ensuring
that published messages on a topic are delivered to all of its subscribers. More
concretely, the system provides the following functions to its users:

– Subscribe(u, t): User u specifies interest in topic t. The system maintains
an internal, protected subscription of the tuple (u, t). u listens for messages
sent with the topic t.

– Unsubscribe(u, t): The system removes any subscription of (u, t) if present,
and u ceases to listen for relevant messages.

– Publish(m, t): A message m is sent into the system under topic t. For every
subscription tuple (ui, ti) s.t. t matches ti, m will be sent to ui.

In the above functions, the nature of a topic and what constitutes a match
between publication and subscription topics are left undefined. A variety of dif-
ferent matching types can be supported by a publish-subscribe system depend-
ing on what it is trying to accomplish. The most basic of these is exact string
matching; in other words users subscribe specifically to a unique topic, and re-
ceive messages that are published exactly to that topic string. This is useful
for establishing communication between defined clusters of users, such as news-
groups.

We will also deal with less concrete groupings, and allow users to instead
define communication on one or more dimensions of ranges so that we can define
geometric shapes of users. In such a case, a topic would consist of one or more
labels, each being associated with an integer value within some pre-defined and
limited range. A subscription would then be a list of label-range pairs indicating
what range of values to accept along each axis. This can be useful for applications
such as geographically based communication, or alert systems that are notified of
values in certain ranges generated from physical sensor networks. Thus we have
matching types on strings, integer ranges, and ranges across multiple dimensions:



– Labels: Each topic is a human-readable string. A publication and subscription
are deemed to match if their topics are identical.

– Ranges: A publication topic is a numerical value v (either integer or float).
A subscription consists of a tuple (l, h) s.t. l ≤ h. A publication and sub-
scription are deemed to match if l ≤ v ≤ h.

– Multi-attribute ranges: A publication topic is a list of tuples (t, v). A sub-
scription topic is a list of tuples (t, l, h). A publication and subscription are
deemed to match if for every tuple in the subscription (ts, ls, vs), there exists
at least one tuple in the publication (tp, vp) s.t. ts = tp and ls ≤ vp ≤ hs.

Our system will be able to make guarantees that messages will be successfully
delivered. It should also make guarantees in regards to the amount of excess de-
livery that occurs. Delivery of messages that were not subscribed to is acceptable
to an extent, since the receiver can simply ignore them himself. By default, these
systems are not designed to prevent users from subscribing to any topic of their
choosing, so it is not considered a leakage for them to receive extra messages. If
it were desirable to prevent such leakages, that could be achieved independently
using encryption systems for each topic. Hence, for the underlying message de-
livery system, excessive message receipt is an efficiency issue, not a security one.
To be called anonymous, the system should ensure that using the basic publish
and subscribe functionality does not compromise one’s identity. In other words,
we aim to prevent interactors and third parties from identifying two parties: the
publishers and the subscribers. The specifics of this protection, which parties are
prevented from identifying the participants and under what circumstances, are
dependent on the implementing system.

We begin with correctness definitions:

– Completeness: For every publication (mp, tp) and subscription (us, ts), if tp
and ts match, then mp will be delivered to us.

– Non-excessiveness: For every publication (mp, tp) and subscription (us, ts),
if tp and ts do not match, then mp will be delivered to us with probability
Pr ≤ ǫ.

These capture the requirement that messages be delivered to those who are
subscribed to them, and that the system not produce undue load by delivering
them to a large amount of uninterested parties. More complicated are the security
definitions. First is publisher anonymity: we will guarantee that no adversary can
learn the identity of the publisher of any message.

Definition 1. Publisher anonymity: Let p be the publisher of message m, and

let H be the set of h honest users in the system. Let A be any collaboration of

entities not in H, including subscribers, entities related to the operation of the

system, outside observers, and other publishers. These entities may enter any

number and type of published messages as publishers,and observe the outputs as

subscribers. A cannot then identify p given m with probability greater than 1

h
.

We allow an adversary to collude with or compromise any number of other
users (both publishers and subscribers) in the system. They may then for any



length of time take any of the actions those entities might take: publishing mes-
sages, subscribing to topics, and observing the messages received as a result of
those subscriptions or through the normal routing of other messages in the sys-
tem. They may do so in an adaptive fashion, choosing what types of publications
or subscriptions to issue based on observations from previous messages, including
the one they are attempting to de-anonymize. They may also attempt to subvert
the system by refusing to forward messages the protocol would otherwise require
them to, and observe the results of such actions in terms of additional traffic
sent. We claim that our system will prevent such an adversary from identifying
the publisher of any given message with probability any better than random
guessing from amongst the pool of non-compromised users.

Next is subscriber anonymity, which encapsulates the protection of the iden-
tities of users who are subscribed to a topic. There are two types of anonymity
we wish to protect:

Definition 2. Topic subscriber anonymity: Let t be a topic for which there are

s subscribers out of a group of S total participants in the system. Let A be any

collaboration of entities having As subscribers, and possibly including entities

related to the operation of the system, outside observers, and publishers. These

entities may enter any number and type of published messages as publishers,and

observe the outputs as subscribers. A cannot identify determine if user u is sub-

scribed to t with probability greater than s−As

S−As

.

This captures subscriber anonymity in the first direction, an adversary should
not be able to identify the subscribers of a given topic with probability greater
than random guessing. Again, we assume an adversary may compromise any
number of users in the system, and learn whatever information it can by taking
all actions normally available to those compromised users. It may again also learn
adaptively, using observations from previous messages to form new publications
and subscriptions to enter into the system. It may do so indefinitely over the
lifetime of a subscription. We claim our system will prevent such an adversary
from identifying any subscriber of a given topic with probability better than
random guessing from amongst the pool of non-compromised users.

Definition 3. Subscription anonymity: Let t be a topic and s be a user sub-

scribed to t. Let A be any collaboration of entities including those related to

the operation of the system, outside observers, other subscribers, and publishers.

These entities may enter any number and type of published messages as pub-

lishers,and observe the outputs as subscribers. Given s, A cannot identify t with

probability greater than 1

T
where T is the total number of possible topics.

This captures the opposite direction: an adversary should not be able to,
given a user, determine what topics he is subscribed to. This will assume the
same types of powers for the adversary as with subscriber anonymity, and the
adversary will attempt to defeat our system by guessing from amongst the pool
of possible subscriptions.



4 Our Systems

We introduce two systems for providing anonymous publish-subscribe. The first
provides a stronger anonymity guarantee, but uses a central point of dissemi-
nation. As such, it does not scale as well as the second system which provides
better scalability at a cost of weaker anonymity. Both systems assume an honest-
but-curious model and do not aim to protect against a global passive adversary.

4.1 Central server routing

Our first solution will be based off of a central server that handles the logic
of matching publications to subscriptions and routing. To guarantee anonymity
from this server, and from other participants, both publishers and subscribers
will connect to it through an obfuscating proxy, which is trusted not to collab-
orate with the server. There are thus four types of entities:

– Server: Stores subscriptions, matches publications, and routes messages. It
should not be able to read message content, subject content, or identify
senders or recipients.

– Publisher: Sends messages into the system.
– Subscriber: Sends subscriptions and receives matching messages from the

system.
– Proxy: Entry point for communication between the server and publishers

or subscribers. It is responsible for all contact with these entities, and for
obscuring their identities from the server.

Trust is separated between the proxy and the server. The proxy will be able to
see the identities of senders and recipients of messages, but will not be able to see
the content of the messages being sent or the subjects they are being sent upon.
The server will be able to see a deterministic encryption of this information,
but will not know who is sending or receiving the messages. Although these
deterministic encryptions can be matched to each other, since all origin points
look identical to the server, he cannot link publishers. This separation of trust
ensures to the user that no single entity can monitor his behavior.

To achieve this separation of information, we make use of a protocol called
re-routable encryption [12]. This protocol allows for a sender and a receiver, each
with unique symmetric encryption keys, and a third router entity. It provides a
fast multi-party computation between the three parties, resulting in the router
receiving a transformation key which then allows him to transform messages
encrypted by the sender into messages encrypted by the receiver’s key without
being able to see or compute the cleartext on his own. This protocol allows
us to efficiently realize the separation of trust between the server and proxy.
These transformation keys will be generated between the server, proxy, and
client (publisher or subscriber) once to introduce each participant to the system.
Owning transformation keys allows the proxy to relay messages to and from the
server without seeing their content or revealing the other communicating party
without the expensive overhead of an obfuscating mixnet.



We also make use of Bloom filters [2] to manage and match large quantities
of publications and subscriptions on the server end while obscuring topic content
from the server. Bloom Filters allow matching against sets that can store any
number of elements with a boundable false positive rate that can be reduced by
increasing Bloom Filter size relative to the number of terms stored.

The server will store an index of all subscriptions on a per-subscriber basis as
a Bloom Filter index. Each subscriber is represented as one Bloom Filter storing
all of his subscriptions. The exact nature of the subscriptions can be anything
supported by Bloom Filters (exact topic keywords, ranges using our range-query
protocol, multi-dimensional ranges, etc.) In our system, the subscribers will be
pseudonymous from the server’s point of view. If subscribers wish to prevent
linkage between their subscriptions, they can do so by creating a pseudonym per
subscription.

The proxies will use re-routable encryption to deliver messages from source
to destination: deterministic for communication of subjects from publisher to
server, and non-deterministic for communication of messages from publisher to
server to subscriber. The proxy contains a transformation key from the server
key to and from the key of each subscriber. This key must be computed between
the user, proxy, and server once to join each new user into the system. The proxy
maintains this mapping using the same pseudonyms used by the Bloom Filter
index held on the message server. The server maintains its own encryption key
kr. To subscribe to a subject, a user generates his own key ku, engages in se-
cure multiparty computation with the proxy and server that results in the server
learning transformation key k r

u

. He then deterministically encrypts his subject
subscription under ku and sends it to the proxy, who transforms it to encryption
under kr and forwards it to the server where it is stored, along with a pseudonym
that the proxy would understand to correspond to the user. We are now ready
for publishers to send messages to subscribers. The system and message path is
thus laid out as in Fig. 1.

A publisher generates a message m, and encrypts it non-deterministically
under ku. He determines a subject s, and encrypts it deterministically under
ku. These are both transformed by the proxy to be encrypted under kr before
being forwarded to the server. The server checks s under deterministic encryption
by kr against his BF index. He then re-randomizes the random component of m
encrypted by kr and sends it to the proxy, along with all the BF match identities.
For each corresponding recipient u′, the proxy transforms m to encryption under
ku′ , and forwards the message to the corresponding users.

Security Analysis That our system achieves completeness and non-excessiveness

is easy to see: since Bloom Filters promise a zero false negative rate all messages
will be properly routed to their appropriate destinations. By adjusting the Bloom
Filter parameters, the amount of excess publications created by false positives
can be made arbitrarily small.



Fig. 1: Centralized anonymous publish-subscribe system

We aim to protect the identity of the participants from the server, and the
content of the messages and subjects from the proxy. This is under the assump-
tion that the proxy and server do not collaborate with each other, and that the
proxy does not collaborate with other publishers or subscribers. The server and
proxy are trusted to be honest-but-curious; that is they will obey the protocols,
but may attempt to learn more than they should from the results.

Claim. Our system achieves trusted-party publisher anonymity.

Let us assume that there were a full collaboration of all other meaningful
entities except for the proxy, who we will treat as a trusted party. The receiver
sees only a delivered message which is entirely agnostic to its origin. Similarly, the
server sees only the message and topic delivered by the proxy after transforming
them to encryption under his own key. These would look identical regardless of
which user originated the publication. Thus even if the adversary consisted of
the server, the receiver, and any number of dishonest publishers, their combined
view of any given message looks identical regardless of which honest user sent
it. Therefore, they cannot gain an advantage in identifying the user.

Claim. Our system achieves both trusted-party topic subscriber anonymity and
trusted-party subscription anonymity.

Again, we can assume collaboration between the server and any number of
publishers publishing on a given topic. The subscription is delivered to the server
by the proxy after transforming the encryption to his own key. This would look
identical regardless of which user is subscribing to the topic. Thus for a given
topic, he will see only a set of subscriptions which do not give any information
that distinguishes between subscribers. In the reverse, given a subscriber, the



subscriptions seen by the server do not look different whether or not he is the
origin. Thus the server cannot gain any information that would help distinguish
between subscribers given a topic, or identify topics given a subscriber.

The proxy is privy to both of these identities, and is thus treated as the
trusted third party. However, he cannot see what content is being delivered or
what topic it is being published to. This is given under the same assumptions
as the underlying re-routable encryption scheme.

Owing to the use of Bloom Filters to match publications and subscriptions,
there is an existing false positive rate. However, since the system is used for open
subscription, this is a non-issue from a security standpoint. The recipient can
simply ignore any messages he is not interested in. As we mentioned before, this
system is only secure if the proxy cannot act as a user. If he is able to, then he
can use transformation keys to transform anything encrypted by the server’s key
into his own key, and thus read messages that are routed through him, breaking
the security of the system.

4.2 Spanning tree routing

Our second solution will route messages to all subscribers using per-subscriber
spanning tree structures. This will be accomplished by providing an overlay net-
work of the nodes, and then representing each spanning tree within the routing
tables of the nodes in the overlay.

The list of nodes in the network will be registered in a global directory, which
can be either a single server, or a DHT for greater scalability. Nodes will then
use Bloom Filter indexes as routing tables to forward messages by checking their
subjects against the indexes. A destination will be represented as a single Bloom
Filter, storing subjects as elements in the filter. Subscriptions live as elements in
these filters. We can thus support routing based on topic for any type of topic
that can be represented in a Bloom Filter (i.e. exact strings, ranges, etc.). In
order to prevent cycles, each message will carry a header with a Bloom Filter
storing unique labels that nodes can check to see if they have already forwarded
the same message. These will be randomly generated and updated on regular
intervals.

All that remains now is to set the routing Bloom Filters such that all pub-
lished messages will be received by all interested subscribers. To do this, each
subscriber will construct a unique spanning tree of the network, rooted on him-
self. We assume the existence of an underlying anonymous communication net-
work that allows both sending a message while protecting the identity of the
sender, and providing a pseudonymous address by which other users can route
messages to a recipient who wishes to protect their true identity. In our imple-
mentation, we use Tor [13] to provide these functionalities. Although Tor has
many known limitations, it is efficient and used often in the real world.

A subscriber will then anonymously instruct all nodes in the network to
add a routing entry for that subject to their parent in his uniquely constructed
tree. Thus, any message anywhere in the network, when routed on this subject,
will find its way to every subscriber that is interested. Although expensive for



subscription, this is fast for publication, and so is well suited for systems where
publications dominate subscriptions in terms of network load. Unsubscription
is a little trickier, and is not handled by our current implementation. We could
handle this in the future either by allowing Bloom Filters to expire and requiring
subscriptions to be updated on a regular basis, or by using counting Bloom
Filters which will allow deletion of entries.

– Subscribe(u, t): User u looks up the node from directory D. As a constant
parameter of the system, he assumes a routing chain length of r. He then
constructs a random, balanced spanning tree of depth r using all nodes in the
network with himself as the root. For each node in the tree, he anonymously
contacts that node, and instructs it to route all messages with subject t to
their parent in the tree. This is done more efficiently by forwarding instruc-
tions for each node through their parents with layered encryption in the same
manner as an onion routing network. Thus, we multicast the subscription
along the same structure as the tree itself.

– Publish(m, t): The sender picks a random origin point in the network, and
uses the underlying anonymous communication network to send his message
to that node. That node routes his message to the nodes indicated by looking
up the subject on its own Bloom Filter index. All other nodes will forward the
message in similar fashion, except first checking their loop-detection label,
then inserting it into the header of the message.

The system and message path is thus laid out as in Fig. 2.

Fig. 2: Spanning tree anonymous publish-subscribe system

In the absence of false positives within the routing Bloom Filters, the common
case is that for each publication, there will be a randomly selected path of length



r from the initial node the publisher selects to each subscriber. If the number
of nodes is significantly larger than the number of subscribers for a single topic,
then in all likelihood, the initial node will have to multiply the message for each
end subscriber. However, this is still a benefit over the central server solution,
since the central server solution uses a single node to multiply all traffic within
the system, whereas with the spanning tree solution, each publication will use
a different randomly selected initial point. This will better distribute load when
there are a large number of publications going out simultaneously.

Efficiency comparison We now compare the efficiency of our protocols for n
receivers, and a tree depth of k, and a load involving p simultaneous publishers.

The primary tradeoffs are between the longest path, which affects the latency
of message delivery, and the bottleneck branching point, which determines how
scalable the protocol is. The central server solution will have a fixed longest
path of four hops (from publisher, to proxy, to server, to proxy, to subscriber).
So for low-load situations, we can expect the latency to be O(1). Conversely,
the spanning tree solution’s path will scale with the depth of the spanning trees
selected, and so has a worse O(k) behavior. However, spanning tree depth is
simply chosen to add layers of indirection and does not need to scale with the
size of the system. So while the spanning tree has worse latency, it is boundable.

Both solutions involve a single point of multicast for each publication in the
expected case. For the central server solution, this is the server. For the spanning
tree solution, if the subscribers are not a significant portion of the total userbase,
then likely each has a unique path from the publisher, making the publisher the
point of multicast. However, in the central server solution, all published messages
share the same point, whereas in the spanning tree solution each has a unique
one. Thus the central server solution faces a load of θ(kp) on the server, whereas
the spanning tree solution faces a load no greater than θ(k) on any one node.
Clearly, the spanning tree solution can handle multiple publisher load scaling
better.

Security analysis Our system provides Completeness and Non-excessiveness

under the honest-but-curious model, that is when all parties perform the protocol
correctly but may try to learn more than they should. If all nodes are forwarding
correctly, messages are guaranteed to be routed to all interested subscribers, with
a boundable false positive rate on loop detection.

Claim. Assuming the security of the underlying anonymous communication sys-
tem, our system achieves complete publisher anonymity.

The message itself does not contain any information unique to the publisher.
From the perspective of the initial receiving node, any message it receives is only
visible as an output of the underlying anonymous communication system. Thus,
if it can identify the origin, then that implies a failure of that system. From then
on, clearly no other node in the network can do better in terms of identifying
the publisher.



Claim. Assuming our underlying TOR system is secure against identification
attacks, our system achieves topic subscriber anonymity.

For any given topic in the system, every node will have one or more nodes
which it is expected to route matching messages towards. And if TOR protects
the identities of its senders, then the subscription process itself will not reveal
the subscriber identity. Thus, no node can distinguish between a neighbor who
is an interested party, and a neighbor who is merely forwarding towards one.
In order to identify a node as an endpoint, an adversary would need to identify
a publication originating from one of the leaves of its subscription tree, and
then compromise all of the nodes on the path from publisher to subscriber, a
requirement as stringent as for an adversary of TOR.

A more complicated issue is denial of service attacks. An attacker who was
himself a subscriber could refuse delivery of messages to nodes he is intended to
forward towards. However, since it is the subscribers who choose the routing tree
that leads to them, an attacker would not be able to fully block a particular sub-
scriber from receiving messages, nor fully block a publisher from disseminating
them. Nor would he have any control over which particular publisher-subscriber
relationships he could interfere with. Furthermore, if subscriptions are updated
on a regular basis, his sphere of influence would be steadily changing. A system
of checks wherein a subscriber occasionally publishes test messages and begins
them at different points in the network could be implemented to specifically
identify malicious nodes, however this remains to be further developed.

5 Performance

We implemented and tested both our central server and splay-tree based systems
to observe scaling issues both in subscription and publication. Unfortunately, to
our knowledge, there exist no other anonymous publish-subscribe systems to
compare to, so we show only to demonstrate usability in comparison to normal
network transactions, and to demonstrate efficiency differences between the two.
To obtain a large number of nodes for scalability testing, we used the PlanetLab
network [5]. Each participating node has at minimum 4x 2.4Ghz Intel cores, 4
GByte ram, and 500GB disk space. Nodes are distributed around the globe to
provide a simulation of internet traffic. For our experiments, we used nodes with
varying geographic locations contained within the US.

Figure 3 shows time to add subscriptions for a varying number of subscribers
for the central server and spanning tree solutions. This was done for a system
with a total of 500 participating nodes. Measurements for the central server
solution were taken using a one server and two proxy arrangement (one proxy
for publishers and one for subscribers). This was measured from a start time
when the subscription requests are queued into the systems, to the time when
the last subscriber completes their request. Time scales roughly linearly for the
central server system, because it is bottlenecked by the single point of connection
and later subscriptions must wait for earlier ones to complete. The spanning tree



Fig. 3: Subscription cost

solution performs worse at lower numbers of subscribers, due to its more involved
protocol. However, it scales much better for larger numbers of subscribers as
they can be handled concurrently. The growth is not entirely smooth, as the
tree generation for each of the subscribers is random, and can cause more or
less requests to be bottlenecked by various nodes depending on what kinds of
overlap results.

Fig. 4: Publication cost

Figure 4 shows time to deliver a publication. This was measured by observing
a single node which subscribes to the same topic it is publishing on, and recording
the time taken to receive its own message. Messages chosen were small text
strings. This was measured from start time when the publisher initiated the



publication to time when the last subscriber reported reception of the message.
Again, time taken scales linearly with the number of subscribing nodes, again
bottle-necking on the server which must duplicate the message once for each
subscriber. In this test, only one publication is issued into the system at a time.
Because of this, the spanning tree solution scales with similar behavior to the
central server solution, but with a large constant overhead for the multiple hop
message transmissions.

Fig. 5: Publication cost in active system

Figure 5 shows the same measurements taken with increasing numbers of
simultaneous publications issued into the system. The number of subscribers is
kept constant at 50. The X axis shows the number of participating publishers,
with each sending a publication at the same time. The Y axis shows the time
taken for a single node which we are monitoring to receieve a single publication
it has itself sent into the system. In this case, we see that the spanning tree
solution steadily outperforms the central server solution, demonstrating a greater
ability to distribute the load in an active system with multiple publishers and
subscribers.

6 Conclusion

We have proposed combining anonymous communication with publish-subscribe
routing, a pairing which is not explored by existing research.We have further pro-
posed two systems for accomplishing this, with tradeoffs in performance and se-
curity. Although the latency overhead to handle publish-subscribe anonymously
is significant, it is reasonable for systems with large numbers of users with small
communities formed around particular topics. This fills a void in existing anony-
mous communication: the question of how anonymous entities should decide who
to communicate with.



References

1. E. Anceaume, A.K. Datta, M. Gradinariu, and G. Simon. Publish/subscribe
scheme for mobile networks. In Proceedings of the second ACM international work-

shop on Principles of mobile computing, 2002.
2. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.
3. J. Broberg, R. Buyya, and Z. Tari. Metacdn: Harnessing storage clouds for high

performance content delivery. In Proceedings of ACM Conference on Data and

Application Security and Privacy, 2012.
4. David Chaum. Untraceable electronic mail, return addresses, and digital pseudo-

nyms. In Communications of the ACM, 1982.
5. Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike

Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev., 33:3–12, July 2003.

6. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: a
distributed anonymous information storage and retrieval system. In International

workshop on Designing privacy enhancing technologies: design issues in anonymity

and unobservability, pages 46–66. Springer-Verlag New York, Inc., 2001.
7. Y. Koglin D. Yao, E. Bertino, and R. Tamassia. Decentralized authorization and

data security in web content delivery. In Proceedings of the 22nd ACM Symposium

on Applied Computing, 2007.
8. A.K. Datta, M. Gradinariu, M. Raynal, and G. Simon. Anonymous pub-

lish/subscribe in p2p networks. In Proceedings of the 17th International Symposium

on Parallel and Distributed Processing, 2003.
9. Roger Dingledine, Michael J. Freedman, and David Molnar. The free haven project:

Distributed anonymous storage service. In Designing Privacy Enhancing Technolo-

gies, International Workshop on Design Issues in Anonymity and Unobservability,

Berkeley, CA, USA, July 25-26, 2000, Proceedings, volume 2009 of Lecture Notes

in Computer Science, pages 67–95. Springer, 2000.
10. Brad Fitzpatrick and Brett Slatkin. Pubsubhubbub.
11. Nick Mathewson George Danezis, Roger Dingledine. Mixminion: Design of a type

iii anonymous remailer protocol. In Security and Privacy, 2003.
12. Mariana Raykova, Binh Vo, Steven Bellovin, and Tal Malkin. Secure anonymous

database search. In CCSW 2009., 2009.
13. Paul Syverson Roger Dingledine, Nick Mathewson. Tor: The second-generation

onion router. In Usenix Security, 2004.
14. TIBCO. Tib rendezvous. In White Paper. TIBCO, 1999.
15. H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen. Towards end-to-end secure

content storage and delivery with public cloud. In Proceedings of ACM Conference

on Data and Application Security and Privacy, 2012.


