Wireless Security
Wireless is Different

• Actually, why is wireless different?
• Is it different?
Wireless *is* Different

- The attacker has access to the network that isn’t as constrained by physical location
- Your security perimeter is much larger
- There are more protocols involved
- Traffic can be monitored
- Traffic can be injected
Common Types of Wireless

- Cellular—Range 1.5-2km from the nearest antenna
- WiFi—range of about 100 meters
- Bluetooth—nominal range of 10 meters
- NFC (Near-Field Communication)—4 cm range
Range

• All ranges can be limited by terrain, intervening objects, and more
• But use of proper antennas can extend the range—important to realize when analyzing security!
• Example: the classic Pringles Can WiFi antenna—perhaps 1 km range
(How Far Away is that Node?)

• If range limits matter, you can’t trust the nominal limits
• Use the ultimate limit: the speed of light.
• Sets an upper bound on distance
• Example: a signal cannot do a round trip of 5 cm each way in less than .16 nanoseconds
 • (Grace Hopper used to hand out foot-long pieces of wire and describe them as “nanoseconds”)
• (The actual calculation is a bit more complex, but it can only raise that limit)
Possible Attacker Goals

Host Access: Ability to talk to a given computer on the net

Network Access: Ability to act as a legitimate computer on the wireless net

Content Access: Ability to read packets sent and received

Metadata Access: Ability to conduct traffic analysis
NFC

• Primarily used for payments
 • The same basic protocol is used for RFID credit cards
• Relatively low bandwidth—106–424K bps
• Often used by very low power devices, e.g., RFID chips—hard to do much crypto
• Sometimes used to set up faster connections, e.g., between Android phones
NFC: Attacker Goals

• Content access, especially for payment card info
• Better yet, spoof a payment for something else
• Possibility for some host access for phone-to-phone NFC
 • Supported on some Android versions
NFC—Attacks

• Hard; none known in the wild
• Timing matters for NFC exchanges
• Some MitM and relay attacks have been demonstrated in the lab
• More serious issue: bugs in the NFC protocol stack
• *Complexity leads to insecurity!*
Bluetooth

- Used for short range, moderate bandwidth communications
- Typical uses: wireless keyboards and mice, headphones, body-area networks, bootstrapping faster communications, etc.
- Bandwidth: up to 1.4 Mbps for Bluetooth 5.0; slower for earlier versions
- Security issue: pairing
- Pairing: how does one Bluetooth device know which other device to connect to and to encrypt to?
Bluetooth Pairing

• Many variants, depending on device type
• Fancier devices can require PIN entry
• Simpler devices, e.g., headphones, might enter pairing mode when you do something odd such as holding down the power button
• A pairwise secret is negotiated; this is used for future associations and communications after successful pairing
Bluetooth Attacks

• Many...
Bluetooth Attacks

• Cryptographic flaws
• Protocol flaws
 • The Bluetooth protocol stack is *very* complex
• Pairing flaws
• Implementation flaws

In other words, more or less anything that can go wrong, has…
WiFi

• Extremely common
• Intended as “wireless Ethernet”—replacement for traditional, high-speed, wired networks
• Speed varies with version, range, and WiFi usage in the area, but generally in the 10s of megabits/second.
• Today, used far more than originally anticipated, for phones, tablets, IoT, and more
WiFi Encryption

• WiFi had encryption from the very beginning—but it had a long, tortuous history

• The goal of the original standard, WEP, is told in its name: “Wired-Equivalent Privacy”

• In other words: make the security equal to that of wired Ethernet, no less—but no more

• It didn’t succeed...
WEP

- Shared key among all users of a network
- No key management—keys were static
- Used RC4, a stream cipher, and an unkeyed CRC instead of a MAC
- Originally used a 40-bit key, due to US export rules; later raised to 104 bits
- Why RC4? Remember the limitations of 1999 hardware—anything better was deemed too expensive, in silicon and in battery power. RC4 is very efficient
- But: WEP was a horrible failure as a security mechanism
MAC versus MAC

• MAC: Message Authentication Code, a keyed cryptographic checksum that detects unauthorized modifications to the message

• MAC address: Media Access Control address, i.e., an Ethernet address
WiFi: A Packet Medium

• WiFi—like Ethernet and for that matter IP—is packet-oriented

• Each packet is an independent message
 • Each packet is self-contained
 • Packets may be dropped, duplicated, damaged, or reordered
 • Any stream-like semantics have to be handled at a higher protocol layer (on the Internet, that’s TCP)

• This means that encryption at the WiFi layer has to be packet-oriented
WiFi and WEP Encryption

• Ideally, WiFi would use a block cipher in some suitable mode of operation, e.g., CBC
 • (Modes like GCM hadn’t been invented yet)
• Stream ciphers assume a reliable underlying byte sequence—but on a packet network, there is no reliable layer larger than a packet
• WEP used RC4, a stream cipher, so every packet had to be encrypted independently
• RC4 generates a pseudo-random byte stream that is XORed with the plaintext, a byte at a time
 \[C_i := P_i \oplus S_i \]
 but for WEP, this can only be done within a packet
WiFi and Stream Ciphers

• With stream ciphers, it is *vital* not to reuse a key stream for two different plaintexts

\[C_{1,i} \oplus C_{2,i} = P_{1,i} \oplus S_i \oplus P_{2,i} \oplus S_i = P_{1,i} \oplus P_{2,i} \]

• If you know one byte, it gives you the other, or you can guess at one plaintext stream and see if it makes the other make sense

• To avoid this, WEP used a 24-bit IV that was concatenated with the static key to form a longer effective key

• 24 bits wasn’t nearly enough, and they didn’t even specify it properly
The IV Problem

• 2^{24} isn’t very many packets—an access point will send that many fairly quickly

• The standard didn’t say how IVs were to be selected—and many devices always started at 0 on power-up (which was frequent, since early WiFi cards were removable from laptops)

• If an implementation tried to be smart and use random IVs, instead of sequential ones, it would repeat on average every ~5,000 packets (birthday paradox)

• The spec didn’t even bar repeated use of the same IV!

It’s worse!
Packet Injection

• Suppose you know the full content of a packet
 • How? Send the target machine such a packet
 • Ping the target, and get the ping and the reply
 • Or induce the target to send you email or visit your website

• XOR the known packet against the ciphertext of a WEP-protected WiFi packet

• That gives you the S_i for the entire packet—use that to create as many new packets as you wish

• Many more variations on this game

But it got worse!
RC4 Isn’t Very Good

• RC4 turned out not to be very strong against cryptanalysis
• Especially in the context of WEP, it’s easy to crack
• Result: breaking into WEP-protected networks is more or less the only widespread use of a cryptanalytic attack in the wild
WEP Operational Issues

• The lack of key management meant that there were no session keys—recovering the WEP key was all you needed for full access

• Since everyone in an organization shared the same key, changing it was logistically almost impossible; everyone had to do it at the same time or they’d lose access
What Went Wrong with WEP?

• The hardware was underpowered
• The designers of WEP knew too little about cryptography—using a stream cipher was simply wrong
 • They should have tried to find a low-energy block cipher
 • At the very least, they could have used a much longer IV; it would have helped against many of the problems, with almost no performance hit
 • They should have used a keyed checksum
• They left key management to a higher level of the protocol stack, but it was never designed, let alone implemented or adopted
• There were no knowledgeable eyes on the entire standardization process
Consequences

- WEP attacks have been used in the real world
- The TJX attack is just one example
WEP versus our Threat List

Host Access: Available due to weak checksum and use of a stream cipher

Network Access: Available via the known full packet attack

Content Access: Available due to cryptanalytic weakness

Metadata Access: The source and destination MAC addresses are sent in the clear
WPA2: WiFi Protected Access

• *Much* stronger than WEP
• Uses AES and a real MAC
• Two modes: WPA2 Personal, with a single pre-shared key for the network, and WPA2 Enterprise, which has a login and password per user
• Still some cryptographic issues—crypto protocol design is *hard*
How Does WPA2 Fare in our Goal Model?

Host Access: Blocked

Network Access: Blocked

Content Access: Blocked

Metadata Access: The source and destination MAC addresses are sent in the clear

But...
Who would want to exploit metadata? Remember that it’s MAC addresses, which stay local.

• Intelligence agencies *love* metadata, to see who talks to whom
 • They also may have or be able to build a database of MAC addresses

• Network operators can track it
 • Intrusion detection; marketing (for public WiFi nets)

• For pay networks, impersonate someone else’s MAC address and run up their tab
WPA2 WiFi versus Wired Nets

• With wired nets, you have a well-defined perimeter
• You also have switch ports to localize misbehavior
 • Suppose that an internal machine has been hacked and starts spoofing its MAC address and IP address
 • On wired nets (with enterprise-grade managed switches), you can see which physical port the spoofing is coming from
 • With WiFi, the attacker could be more than a kilometer away
 • Also: switches (mostly) direct traffic to the intended machine; with WiFi, everyone on the same access point will see it
 • Similarly, ARP-spoofing without detection is easier
• But: the encryption with WPA2 Enterprise is per-user, so other on-net nodes can’t read the WiFi traffic; they can on some wired nets
Tracking Misbehavior on WiFi

• Start from the access point
• Using radio direction-finding is harder than you would think—problems with multipath
• Block-list the offending IP and/or MAC addresses and see who complains
• That won’t do much good against a serious attacker!
Should We Worry About This?

• “Flaw in billions of Wi-Fi devices left communications open to eavesdropping” (https://arstechnica.com/information-technology/2020/02/flaw-in-billions-of-wi-fi-devices-left-communications-open-to-eavesdropping/)

• When a device disassociates from an access point, remaining traffic is sent encrypted with a key of all zeroes—and it’s possible for the attacker to force disconnects

• Is this scary?
Not Really

• It’s at best access to a bit of content and a bit of metadata
• The attacker can’t control what’s made available
What About Public WiFi?

• Encryption is almost never used
• If it is used, it’s WPA2 Personal, not Enterprise, so there’s no protection against on-net eavesdroppers
 • Remember that most public WiFi nets are used by normal people, not computer geeks
 • Asking users to put up with crazy configuration options will not work
• What are the risks? The attacker can achieve all of our goals. Is this a serious problem?
Public WiFi: Content Access

• Content is obviously available; use of encryption is mandatory
• Better yet, use a VPN, to encrypt all traffic leaving your computer
• MAC address metadata is always sent in the clear—but VPNs hide your destination IP addresses
 • If your MAC address is sensitive, change it—you generally can—before connecting to the WiFi network
• Is your VPN gateway sensitive? If so, use Tor
 • VPN gateway addresses are most likely to be of interest to intelligence agencies
Public WiFi: Network Access

• It’s a public net; no barriers to joining...
• Some nets, e.g., in hotels, *may* restrict access, but via a very low barrier
Public WiFi: Host Access

• Some public WiFi nets prevent hosts from contacting other hosts on the same network, but you can’t count on that

• This is the hard question: what is the risk *to your computer* if you use a public WiFi network?

• How do we analyze this? Of course: execution environment
Are We Missing Something?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Link</td>
<td>Network</td>
<td>Transport</td>
<td>Session</td>
<td>Presentation</td>
<td>Application</td>
</tr>
</tbody>
</table>

The Network Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Purpose</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Application</td>
<td>Email, HTTP, etc</td>
</tr>
<tr>
<td>6</td>
<td>Presentation</td>
<td>Presentation</td>
</tr>
<tr>
<td>5</td>
<td>Session</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>4</td>
<td>Transport</td>
<td>IP</td>
</tr>
<tr>
<td>3</td>
<td>Network</td>
<td>WiFi, Ethernet</td>
</tr>
<tr>
<td>2</td>
<td>Link</td>
<td>Radio, cable, fiber</td>
</tr>
<tr>
<td>1</td>
<td>Physical</td>
<td></td>
</tr>
</tbody>
</table>
Link Layer Issues?

• We usually think of security problems from layer 3 up
 • But eavesdropping is often a layer 1 issue
• What can happen at layer 2?
• For WiFi, there’s a protocol for associating with the network and for negotiating a cryptographic key
• Are there problems there? Maybe!
• (N.B. Apple does a lot at layer 2, e.g., Airdrop)
Execution Environments

Corporate Desktop
• Mostly friendly hosts
 • But what if some internal host has already been hacked?
• Good internal monitoring should detect traffic diversion attempts
• A number of services on, to permit collaboration
• Attacker goals
 • Access rights of this computer
 • Data stored on it (but maybe not much)

Public WiFi
• Mostly unknown hosts
 • Some might be evil
• Intercepting traffic is easy
• Few externally-facing services are needed—unless you need to talk to a public printer
• Attacker goals
 • Access rights of this computer, especially after it goes back to the office
 • Data stored on it (probably more than at work)
Differences

• There are more assets at risk for laptops on public WiFi
 • It may be how there is an inside machine that was hacked—it had been an exposed laptop...

• For a serious enemy, the odds of an already-hacked inside machine are moderately high
 • *No incremental risk of attack!*

• If we can turn off some services when outside—better yet, have them turned off automatically—the risk of attack may be *lower* outside

• If the corporate firewall works well—an assumption!—it can block nasty stuff from “recreational” sites employees might visit
Conclusions

- The incremental risk to laptops is not high, especially with modern operating systems
- Disabling some services automatically is a good idea
- Use a VPN
- Encourage use of the corporate firewall, even for recreational browsing
Fake Hotspots

• Most devices *automatically* associate with known nets
 • Nets are identified by SSID (Service Set Identifier)

• What if an attacker spoofs a known net, corporate or hotspot?

• Conclusion: *always* use bilateral authentication
 • Software should *always* check the validity of the far side’s certificate
Always-On VPNs?

• Can we have an always-on VPN?
 • Recall that a proper VPN will reject non-VPN packets
• The problem is sign-on—many public hotspots require some sort of sign-on page before they let you out to the Internet
• How do you protect the browser that does the sign-on?
• Sandbox it?
A Sandboxed Browser?

• Browsers are sandboxed; should they be allowed to bypass the VPN?
• But browsers are always sandboxed because of how vulnerable they are
 • (Is the sandbox secure?)
• And: browsers often have access to stored passwords
• What’s needed: a separate browser that’s outside the VPN, with only the passwords needed to connect to networks
• **PLUS:** a VPN that is automatically and always started for all other network connections
• That *should* make public WiFi safe
Doing Without WiFi?

• Should companies just do without public WiFi?
• Why do employees travel with laptops? *To increase their productivity*—*they need connectivity*
• In other words, there is a risk from no WiFi as well
Cellular Wireless

• Cellular service is usually safer
• It’s relatively easy, even for high-end hackers, to divert calls to a mobile phone
• But data is data, and is sent over IP, which isn’t controlled by SS7
• There are still all of the usual IP routing games, but that’s an Internet story, not a cellular one
• However...
IMSI Catchers

• Fake base stations (sometimes called “Stingrays”, after one popular model)
• Can locate cell phones belonging to targets; can also intercept traffic from them
 • But: must be close enough to the target to present a stronger signal than the real base stations
• Newer mobile phone protocols authenticate the base station, too
 • But: what if the enemy controls the real cellular network?
 • In many countries, there are PTT—postal, telegraph, and telephone—ministries, i.e., the phone network is operated by the government
 • Or: phone switches can be hacked
IMSI Catchers: Uses

• Primary law enforcement uses:
 • Is a given number in a given location?
 • What numbers are in that location?
 • N.B. Like all base stations, IMSI catchers have a finite radius they can reach, and almost certainly less than a real base station due to lack of a good, high-mounted antenna

• Can IMSI catchers wiretap calls? Data? They could for 2G cellular, but that’s old. Can they today? Unknown publicly.
 • But: on their home turf, a foreign intelligence agency can play its games on the land side; they don’t need IMSI catchers for that
 • What about intelligence agencies operating in other countries? There have been claims about many IMSI catchers around D.C., but no proof
Attacker Goals: Cellular

Network Access: Trivial
Host Access: Generally blocked by carriers, but not always
Content Access: Encrypted over the air; how strongly is not clear
Metadata Access: Some available via IMSI catchers
Is Wireless Safe?

• “It depends”
• What is your threat model? Who are your enemies, and what are their goals?
• Non-cellular nets require proximity, which limits attackers
• Cellular networks are safer *except* when dealing with intelligence agencies
• And again: what is the cost of being offline?
Questions?

Black-crowned night heron, Central Park, July 23, 2021