
Fuzzing

https://creativecommons.org/licenses/by-nc/4.0/deed.en_US


Fuzzing

A way to find input-parsing bugs by randomly or systematically modifying
input streams
Can be random (no knowledge of input formats), smart (handles input
formats, checksums, etc.), black box (smart, but with no validation of code
coverage), or white box (systematically test different code paths)
Input data can be generated automatically or by mutating valid inputs
Extremely powerful technique, used by testers and attackers

Fuzzing 2 / 50



Why Does Fuzzing Work?

It exercises seldom-tested code paths
It pushes boundary conditions
Note: tester must use other tools to look for memory leaks, deadlocks,
code coverage, etc.

Fuzzing 3 / 50



Who Fuzzes?

Developers
Security testers
Quality assurance groups
Attackers. . .

Fuzzing 4 / 50



Security Scanners versus Fuzzers

Scanners are reactive—they only find known problems
Fuzzers can find unknown problems
(Similar issue with regression testing)

Fuzzing 5 / 50



Fuzzing Isn’t Ordinary Testing

Ordinary testing checks if code meets the requirements
“Input lines longer than 512 characters must be rejected”
In other words, it finds knowable issues—and possibly not correctly
A test suite might have a 513-character line, which the program
rejects—but perhaps a 5120-character line will cause a buffer overflow
before that check happens

Fuzzing 6 / 50



The Linux Man Page for gets()

gets() returns s on success, and NULL on error or when end of file
occurs while no characters have been read. However, given the lack of
buffer overrun checking, there can be no guarantees that the function
will even return.

In other words, a gets() read into a 513-byte buffer can be used for 512 bytes
or to detect 513 bytes—but a longer input line may never reach the check.

Fuzzing 7 / 50



Goals: Testing versus Fuzzing

Testing: Find which requirement isn’t met
Fuzzing: Generally, crash the program under test
Fuzzing is not about finding vulnerabilities per se, but most
fuzzing-induced crashes can be turned into exploits

Fuzzing 8 / 50



Fuzzing Usually Isn’t Random Input

$ nc www.cs.columbia.edu 80 </dev/urandom
HTTP/1.1 400 Bad request
content-length: 90
cache-control: no-cache
content-type: text/html
connection: close

<html><body><h1>400 Bad request</h1>
Your browser sent an invalid request.
</body></html>

Fuzzing 9 / 50



By Contrast

$ nc eu.httpbin.org 80
GET /fa4bfb50d9e3e826860eecbd86d623e7cddb HTTP/1.0

HTTP/1.1 404 NOT FOUND
Date: Tue, 14 Apr 2020 18:02:35 GMT
Content-Type: text/html
Content-Length: 233
Connection: close
Server: gunicorn/19.9.0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>404 Not Found</title>
<h1>Not Found</h1>
<p>The requested URL was not found on the server. If you entered the
URL manually please check your spelling and try again.</p>

Fuzzing 10 / 50



Which is More Likely to Find Problems?

Simple nonsense is easy to reject—for HTTP, just see if the first few
characters match a valid command
Syntax-driven fuzzing can find deeper problems
Better yet: follow the state machine

Fuzzing 11 / 50



Fuzzing and Protocol States

Protocols often have different states
You can’t test behavior in a later state if you don’t reach it successfully,
generally via valid inputs
Example: you can’t fuzz an HTTPS-only website if you never successfully
negotiate the TLS connection

Fuzzing 12 / 50



Fuzzing Strategies

Knowledge of generic input is necessary
Two broad types: generation and mutation fuzzers
Both have their uses

Fuzzing 13 / 50



Generation Fuzzers

Typically start with a grammar (perhaps in BNF) of the accepted language
Generate random inputs that match that grammar
Include special notation for, e.g., length fields, checksums, etc.
Note: obviously, grammars are different for binary protocols than for ASCII
or Unicode

Fuzzing 14 / 50



Mutation Fuzzers

Provide samples of valid inputs
The fuzzer generates changes to the valid input
Again, there are special provisions for things like length fields
Of course, invalid length fields are also interesting. . .

Fuzzing 15 / 50



Hybrid Approaches

Some fuzzers do both
Often: use one approach to get to some protocol level, then switch to
another
Some use libraries of known troublesome patterns, e.g., filenames with
/../../../../etc/passwd in them
Sometimes, this is a good spot for random inputs

Fuzzing 16 / 50



When Fuzzing Fails

Suppose, over the history of a project, you’ve been fuzzing a module, and
finding and fixing bugs
One day, fuzzing no longer crashes it
Is it now (security) bug-free? Or are there bugs that the current fuzzer
can’t find?

Fuzzing 17 / 50



The Pesticide Paradox

Any testing method leaves a residue of subtle bugs it couldn’t find
This lets the complexity of the code grow
We’ve eliminated the easy bugs, leaving subtle ones
Conclusion: when fuzzing doesn’t find bugs, fuzz harder!

Fuzzing 18 / 50



Black Box, White Box

Black box fuzzing: go after the binary, with no knowledge of the source
code
White box: use the source to guide fuzzers

R Can measure code coverage

R Can test using hidden or undocumented parameters

Fuzzing 19 / 50



Instrumentation-Guided Fuzzers

Add instrumentation to your code to tell the fuzzer what has happened
Better yet, have your compiler add the instrumentation
The fuzzer will try to avoid paths it has already exercised and look for new
ones
Result: more code coverage testing
N.B.: the longer a fuzzer runs and the more code paths it has to cover,
more likely it is that the program has a high attack surface
Similar conclusions if the fuzzer finds many different classes of bugs

Fuzzing 20 / 50



Levels of Fuzzing

Individual routines, via unit test frameworks or in-memory changes
Single programs
Network APIs
Files
All the myriad ways that web servers can fail

Fuzzing 21 / 50



History of Fuzzing

Some early work in the 1970s and 1980s
(As an undergraduate, my friends and I would sometimes feed object files
to a compiler, to see how crazily it would react, but we had no deeper
motive)
Early testing of TCP/IP—you could get points for “KOing your opponent”,
i.e., crashing another implementation
More formal use in software testing in the 1990s; some academic interest
1999–2001: Oulu University, Finland

Fuzzing 22 / 50



Oulu University

In 1999, they built the PROTOS fuzzer, which they used to fuzz many
important network protocols
They found many flaws, most importantly in SNMP
SNMP: Simple Network Management Protocol
Used by ISPs and many enterprises to monitor routers and other network
elements
Everyone had to patch on short notice. . .
This put fuzzing on the map—and since some of the problems found were
security problems, it put fuzzing on the security map

Fuzzing 23 / 50



Why SNMP?

SNMP packets are defined using ASN.1 (Abstract Syntax Notation 1)
ASN.1 is very complex; the field definitions are translated into C by a
compiler
Many implementations used the same compiler. . .

Fuzzing 24 / 50



An ASN.1 Example from SNMP

GetRequest-PDU ::=
[0]

IMPLICIT SEQUENCE {
request-id

RequestID,

error-status - always 0
ErrorStatus,

error-index - always 0
ErrorIndex,

variable-bindings
VarBindList

}

Fuzzing 25 / 50



Why Fuzzing?

More precisely, why am I talking about fuzzing in this class, which focuses
on system security?
What do we fuzz?
Why?
What do we do with the answers?

Fuzzing 26 / 50



What is the Lesson of the SNMP Problem?

ASN.1 is complex; therefore, there is (probably) a large attack surface
There was a common mode failure: a single compiler
The defenses either failed or weren’t deployed

Fuzzing 27 / 50



SNMP Authentication via the “Community” String

COMMUNITY-BASED-SNMPv2 DEFINITIONS ::= BEGIN
- top-level message

Message ::= {
SEQUENCE {

version
INTEGER {

version(1) - modified from RFC 1157
},

community - community name
OCTET STRING,

data - PDUs: SNMP commands
ANY

}
}

END

Fuzzing 28 / 50



What’s the Problem?

The community string—the password—is encoded in ASN.1, too
The compiled code has to parse the over-the-wire ASN.1 to extract and
then validate the password
But the parser was buggy. . .
That is: the authentication mechanism was in a module with a very high
attack surface

R Fuzzing exposed, as an implementation issue, what should have been
clear as an architectural point

Fuzzing 29 / 50



(We Could Have Lost the Internet!)

This was a critical vulnerability; ISPs had to patch or install filtering
immediately
But—major ISPs test new vendor software releases for months before
putting them into production
Even installing packet filters is risky—you can accidentally lock yourself out

Fuzzing 30 / 50



Suggested Mitigations

The mitigations that CERT suggested are also interesting
Disable SNMP—but ISPs can’t
Ingress filtering—block SNMP packets from outside the ISP network
Block the SNMP port from unauthorized internal hosts—good idea for
enterprises, but not very applicable to ISPs
(And what about zero-trust architectures?)
Put SNMP on a separate management network only
What do these tell us?
Let’s look at an ISP topology

Fuzzing 31 / 50



(Simplified) ISP Backbone

POPs are connected by backbone links

Fuzzing 32 / 50



Point of Presence (POP)

R1 R2

access router access router access routeraccess router

A2 A3 A4

NOC

A1

Customers and peers (other ISPs) are connected to access routers A1, A2, A3,
A4; inter-POP links are via backbone routers R1 and R2

Fuzzing 33 / 50



Managing this Network

How does the NOC connect?
Primarily in-band: over the Internet
Is this wise?
And what about after the SNMP fuzzing result?

Fuzzing 34 / 50



A Management Network

Add a separate management network
Only allow SNMP over it
But what about reliability?

Fuzzing 35 / 50



A POP with a Management Network

R1 R2

access router access router access routeraccess router

Management

A1 A2 A3 A4

Fuzzing 36 / 50



Managed Backbone

Fuzzing 37 / 50



Reliability

ISPs require reliability
They must have the ability to manage all of their devices
Single points of failure—like a management network or a special
management router—are not acceptable
ISPs do have management networks—but they’re backups to
over-the-Internet management, which provides two independent paths to
every element
We have to secure the Internet path!

Fuzzing 38 / 50



Securing Many Routers

Suppose you need to push out filters to many, many routers. How do you
do this?
This is only feasible if you’ve prepared in advance, if you have tools to
manage all of your endpoints
You can’t possibly hand-edit thousands of routers’ configuration files
Tool-building always pays for for sysadmins. . .

Fuzzing 39 / 50



Design for Management

For enterprises, you have to design things to be managed
System management has many different pieces: monitoring network
elements and servers, pushing configuration changes, patching software,
diagnosing and rebooting machines, tracking which laptops haven’t been
patched, etc.
Example: how do you secure access to a power bar, a device that lets you
power-cycle a computer remotely? What if it doesn’t support your
preferred style of authentication?

Fuzzing 40 / 50



Where Else is ASN.1?

If SNMP was vulnerable because of ASN.1, what else uses ASN.1?
TLS, S/MIME, anything involving X.509 certificates
Why? Because they were dealing with complex, over-the-wire data
structures, with varying precision integers, varying length strings, optional
fields, and more
This all has to work on many different computer architectures
Some form of binary field description language is needed
Also: the IETF decided to use OSI’s X.509 certificate format; it was defined
in ASN.1
(There’s a long political story about that, too)

Fuzzing 41 / 50



Dealing with ASN.1 Software

Anything that uses ASN.1 can be presumed to have a high attack surface
How do we handle this?
Can we

1 Secure ASN.1?
2 Stop using ASN.1?
3 Isolate it?
4 Something else?

None of the choices are great. . .

Fuzzing 42 / 50



Securing ASN.1?

Nope!
Remember the actual problem statement: not that it’s insecure, but
rather, that it has a high attack surface
We can try to audit the code, test the code—and fuzz the code
Architecturally, though, we want to move it out of critical locations

Fuzzing 43 / 50



Stop Using ASN.1?

Not possible—too many essential services rely on it
You can’t run a web site without TLS
You can’t run enterprise-grade router complexes without SNMP
Many VPNs require X.509 certificates

Fuzzing 44 / 50



Isolation?

Sometimes, we can isolate ASN.1 software
More precisely, we can parse it where failures are less harmful
But this isn’t always possible

Fuzzing 45 / 50



Isolating TLS

Web Server Web Server

Router Router

Inverse
Proxy/

Load BalancerLoad Balancer
Proxy/
Inverse

Router Router

Database Database Database
Routers

Database

Web Server

To Back Ends

ISP ISP

We can terminate TLS on the load
balancers or on the web servers

If a load balancer is hacked, active
traffic can be sniffed and the web
server is more open to attack

If a web server is hacked, the
attacker has direct access to the
databases—far more serious!

Conclusion: it’s safer to terminate
TLS on the load balancer

Fuzzing 46 / 50



Google’s Access Proxies

Access proxies also terminate TLS connections
If it was hacked, the web service behind it would be exposed
Access proxies can attach login information—which could be spoofed
How many web services does a typical AP serve? That is, how many
services are exposed to a single AP failure?

Fuzzing 47 / 50



VPNs

VPN gateways handle encryption and decryption—but they’re also access
control points
If one is hacked, anyone can get into the network
If we offloaded the certificate processing and that machine was hacked, it
wouldn’t validate certificates properly, so attackers could still get in
Conclusion: we cannot isolate a VPN gateway; all we can do is monitor it

Fuzzing 48 / 50



Fuzzing

Fuzzing should be part of every test group and every security group’s
toolkit
Using it properly is work
If properly used, it gives guidance on attack surface as well as on bugs
System architects need to know how to use the output

Fuzzing 49 / 50



Questions?

(Palm warbler, Central Park, April 2, 2022)


