
Authentication

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


Authentication

A trilogy: identification, authentication, authorization
ACLs and the like are forms of authorization: what you’re allowed to do
Identification is whom you claim to be be
Authentication is how you prove it

Authentication 2 / 56



Forms of Authentication

Something you know
Something you have
Something you are
(Hmm, yet another trilogy)

Authentication 3 / 56



Forms of Authentication

Something you know: passwords
Something you have: smart card
Something you are: fingerprint

Authentication 4 / 56



Something You Know

Ancient: “what’s the secret word? (Supposedly dates to at least Roman
times.)
Modern incarnation: passwords
Most common form of authentication

Authentication 5 / 56



Passwords

Everyone understands the concept
Passwords should be sufficient
Not really. . .

Authentication 6 / 56



Passwords are Really Bad

Guessable
Forgettable
Enumerable
Eavesdroppable (but that isn’t a word. . . )
Replayable
Reusable
Leakable
Probably a lot more reasons not to use them

Authentication 7 / 56



Guessable Passwords

People tend to pick bad passwords
Their own name, phone number, spouse’s name, kids’ names, etc.
Easy to write password-guessing program (Morris and Thompson, CACM,
Nov. 1979)

Authentication 8 / 56



Password-Guessing Programs

Try likely words: names, dictionaries, etc.
Use specialized dictionaries, too: other languages, science fiction terms,
etc.
Try variants: “password” → “passw0rd” or “Password”
Use specialized, optimized algorithm
In uncontrolled environments, at least 40-50% of people will have
guessable passwords

Authentication 9 / 56



How Are Passwords Stored?

Not in plaintext
Administrator can see them
Can be stolen from backup media (or recycled disk drives. . . )
Editor bugs can leak them
Something that doesn’t exist can’t be stolen!

Use a one-way hash; compare stored hash with hash of entered password
Read-protect the hashed passwords anyway

Authentication 10 / 56



Guessing Mechanisms

Online: try to log in as the user
Offline: steal a copy of the password file and try on your own machine (or
on many compromised machines—including their GPUs)
Note: that’s why we read-protect the hashed passwords

Authentication 11 / 56



Defenses

Rate-limit online guesses
Perhaps lock out the account—but that leaves you vulnerable to DoS
attacks
Make password-guessing inherently slow: use a slow algorithm

Authentication 12 / 56



The Classic Unix Password-Hashing Algorithm

Use DES (encryption algorithm with 56-bit keys in 8 bytes)
Don’t encrypt the password, encrypt a constant (all 0s) using the password
as the key
(Why not encrypt the password?)

R This is where the 8-character limit comes from
Any decent cryptosystem can resist finding the key, given the plaintext
and ciphertext
Iterate 25 times, to really frustrate an attacker
Guard against specialized hardware attacks by using the “salt” to modify
the DES algorithm

Authentication 13 / 56



The Classic Unix Password-Hashing Algorithm

Use DES (encryption algorithm with 56-bit keys in 8 bytes)
Don’t encrypt the password, encrypt a constant (all 0s) using the password
as the key
(Why not encrypt the password?)

R This is where the 8-character limit comes from
Any decent cryptosystem can resist finding the key, given the plaintext
and ciphertext
Iterate 25 times, to really frustrate an attacker
Guard against specialized hardware attacks by using the “salt” to modify
the DES algorithm

Authentication 13 / 56



Salt

Pick a random number—12 bits, for Unix—and use it to modify the
password-hashing algorithm
Store the salt (unprotected) with the hashed password
Prevent the same password from hashing to the same value on different
machines or for different users
Makes dictionary of precomputed hashed passwords much more expensive
Doesn’t make the attack on a single password harder; makes attacks
trying to find some password 4096× harder

Authentication 14 / 56



Examples of Salting

Without Salt With Salt

joe →0x21763a
fred→0xc19ecf
pat →0xfcef3d
sue→0x71ca7a

. . .

joe →0,0x21763a; 1,0x0e08e7; 2,0x4fea4b; ...
fred→3,0xc19ecf; 4,0x55be45; 5,0xf0b015; ...
pat →6,0xfcef3d; 7,0x261286; 8,0x2437ba; ...
sue→9,0x71ca7a; 10,0x83f700; 11,0x04ed54; ...

. . .

Authentication 15 / 56



Why Does Password-Guessing Work?

People are predictable
Passwords don’t have much information

According to Shannon, an 8-character word has 2.3 bits/character of
information, or a total of 19 bits
Empircally, the set of first names in the AT&T online phonebook had only
7.8 bits of information in the whole name
219 isn’t very many words to try. . .

Authentication 16 / 56



Can We Lengthen Passwords?

There are other possible hashing algorithms that don’t have an
8-character limit.
Using 256-bit AES in the same way would let us use 32-character pass
phrases; using HMAC would permit unlimited length
Are long passphrases guessable?
Running English text has entropy of 1.2-1.5 bits/character—but no one has
built a guessing program to exploit that
No one knows if it’s even possible to exploit it

Authentication 17 / 56



Forgettable Passwords

People forget seldom-used passwords
What should the server do?
Email them? Many web sites do that

R What if someone can read your email?

R Only possible if the passwords are stored in plaintext
Reset them?

R How do you authenticate the requester?
Password hints?
Is it bad to write down passwords? If your threat model is electronic-only,
it’s a fine thing to do. If your threat model is physical, forget it. (See the
movie “Ghost”)

R Don’t neglect the threat of abusive domestic partners

Authentication 18 / 56



Email and Password Recovery/Reset

Emailing a password is the most common means of password recovery or
reset
This means that protecting your email account is crucial—it controls
access to most of your other accounts
Also: high-value systems, e.g., bank accounts, can’t rely on email for reset

Authentication 19 / 56



Eavesdroppable

Wiretapping the net isn’t hard, especially if wireless links are used
Done on the Internet backbone in 1993-4; see CERT Advisory CA-1994-01
Install a keystroke logger on the client
Install a password capture device on the server
Play games with the DNS or routing to divert the login traffic

Authentication 20 / 56



Stealable

Shoulder-surfing
Bribery—trade a password for a candy bar
(http://news.bbc.co.uk/2/hi/technology/3639679.stm)

Authentication 21 / 56

http://news.bbc.co.uk/2/hi/technology/3639679.stm


Reusable Passwords

People tend to reuse the same passwords in different places
If one site is compromised, the password can be stolen and used elsewhere
At the root of “phishing” attacks

R A fraud incident on Stubhub is believed to have used passwords stolen
from Adobe.com.

R Reusing passwords is a much greater ill than picking weak passwords

Authentication 22 / 56



Password Managers

Store passwords in an encrypted file
Who can see this file?
How strongly is it protected?
People use many machines today—synchronize this database? How?
Can malware get at the database?
How is it used?

R If the manager recognizes web sites, it can help protect against phishing

Authentication 23 / 56



Password Mangers: Cloud-Based

Simplifies use from multiple devices
Allows for provider-based intrusion monitoring
(Allows the provider to charge a recurring fee for access. . . )
But: can an attacker launch guessing attacks on the password used to
protect this database?

Authentication 24 / 56



The Fundamental Problems

Passwords have to be human-usable
Passwords are static, and hence can be replayed

Authentication 25 / 56



Something You Have

Many forms of tokens
Time-based cards
USB widgets (“dongles”)
Rings
Challenge/response calculators
Mobile phones
Smart cards
Mag stripe cards
More

Authentication 26 / 56



Disadvantages of Tokens

They can be lost or stolen
Lack of hardware support on many machines
Lack of software support on many machines
Inconvenient to use
Cost

Authentication 27 / 56



The Java Ring

This ring has a Java interpreter, a crypto chip, and certificate-processing code.
Google and others are pushing NFC devices of various sorts

Authentication 28 / 56



NSA’s STU-III (Ancient!) Secure Phone

Photos courtesy of Richard Brisson

Authentication 29 / 56



And the Crypto-Ignition Key

Authentication 30 / 56



How STU-IIIs are Used

The phones have cryptographic keying material, and are in controlled
areas
The keys also have keying material, and user’s name and clearance level
Each party’s phone will display the other party’s name and clearance level
Keys are associated with particular phones
You need both the key and access to the right phone to abuse it
Two-factor authentication

Authentication 31 / 56



Two-Factor Authentication

Two of the three types of authentication technology
Use second factor to work around limitations of first
Example: SecurID card plus PIN

Authentication 32 / 56



SecurID Tokens

A SecurID token on two successive time cycles. The bars on the left of the
second picture indicate how many 10-second ticks remain before the display
changes, in this case about a minute. In essence, the display shows Hk(T),
where T is the time and Hk is a keyed hash function.
Generic name: TOTP (Time-based One-Time Passwords)

Authentication 33 / 56



Soft Tokens

Phone apps can do the same things as
dedicated tokens (CU uses Duosec)
The partially-filled circle shows the time
left for that code; there’s a refresh button
to generate a new one
But—is the cryptographic secret protected
as well as on dedicated tokens? There are
hardware and software attacks possible
now

Authentication 34 / 56



Eavesdropping Again

Can’t someone eavesdrop on a token-based or two-factor exchange?
Sure!
Must use other techniques as well: encryption and/or replay protection

Authentication 35 / 56



Replay Protection

SecurID: code changes every minute; database prevents replay during
that minute
Challenge/response: server picks a unique number; client encrypts it
Cryptographic protocols

Authentication 36 / 56



Cryptographic Authentication

Use cryptographic techniques to authenticate
Simultaneously, negotiate a key to use to protect the session
But where do the original cryptographic keys come from?

Authentication 37 / 56



Cryptographic Keys are Long

An AES key is at least 128 bits. Care to remember 32 random hex digits as
your password?
An RSA key is at least 2048 bits. Care to remember 512 random hex digits
as your password?
Solution 1: store the key on a token
Solution 2: store the key on a computer, but encrypted

Authentication 38 / 56



Storing Keys on Tokens

The most secure approach (my Java ring has an RSA key pair on it)
Proper integration with host software can be tricky
Generally want two-factor approach: use a password to unlock the token
Ideally, the token is tamper-resistant

Authentication 39 / 56



Storing Keys on Hosts

Software-only approach is useful for remote logins
Must use passphrase to encrypt key
Not very resistant to capture of encrypted key—we’re back to offline
password guessing
Can you trust the host to protect your key?

Authentication 40 / 56



Use a Passphrase as a Key?

Convert the user’s passphrase to a key, and use it directly
Approach used by Kerberos
Remember the low information content of passphrases. . .
Attack: eavesdrop on an encrypted message; guess at passphrases; see
which one yields a sensible decryption
Solution: use a SPAKA (Secure Password and Key Agreement) protocol

Authentication 41 / 56



Why Should Tokens be Tamper-Resistant?

Prevent extraction of key if stolen
Note: recovery of login key may permit decryption of old conversations
Prevent authorized-but-unfaithful user from giving away the secret—you
can’t give it away and still have use of it yourself.
Folks have pointed cameras at their tokens and OCRed the
digits. . . http://smallhacks.wordpress.com/2012/11/11/
reading-codes-from-rsa-secureid-token/

Authentication 42 / 56

http://smallhacks.wordpress.com/2012/11/11/reading-codes-from-rsa-secureid-token/
http://smallhacks.wordpress.com/2012/11/11/reading-codes-from-rsa-secureid-token/


Mobile Phones

Use a phone as a token: send an SMS challenge to the phone
Indepedent failure mode: will the attacker who has planted a keystroke
logger on a computer also have access to the owner’s phone?

R Eavesdropping on a phone requires very different access and technology
than hacking a computer or eavesdropping on WiFi.
Are there privacy risks from everyone having your mobile number?
What about malware on the phone?
Twitter’s variant: app talks directly to Twitter and user; easier to use

Authentication 43 / 56



Other Threats

Bogus SIM cards, with the help of a deluded carrier
An attacker who controls the phone network
Inceasing linkage between hosts and phones reduces the second factor:
it’s no longer independent

Authentication 44 / 56



Federated Authentication

Log in—via strong-but-inconvenient authentication—to Facebook, Google,
etc.
These sites vouch for your identity to other sites
What about privacy? (Mozilla’s solution tries to solve this.)
Do you trust some other site to vouch for your users? Your employees?

Authentication 45 / 56



Today’s Status

The evils of passwords have become very, very apparent
There is a strong push to get rid of them, especially by Google
But will they succeed?
Passwords seem easy and cheap, and don’t require (much) user
training—but is that still true if you account for password recovery and
compromise?

Authentication 46 / 56



Analyzing Password Security
Practices

Authentication 47 / 56



What’s the First Question?

What are we trying to protect, and against whom?
That’s always the first question! So: what are we trying to protect?
We have to protect the plaintext password—possession of it gives access
to this site and (probably) many others
We want maximal protection against all enemies

Why “all enemies”?
Passwords are used in almost all contexts, even if supplemented by 2FA

Authentication 48 / 56



What’s the First Question?

What are we trying to protect, and against whom?

That’s always the first question! So: what are we trying to protect?
We have to protect the plaintext password—possession of it gives access
to this site and (probably) many others
We want maximal protection against all enemies

Why “all enemies”?
Passwords are used in almost all contexts, even if supplemented by 2FA

Authentication 48 / 56



What’s the First Question?

What are we trying to protect, and against whom?
That’s always the first question! So: what are we trying to protect?

We have to protect the plaintext password—possession of it gives access
to this site and (probably) many others
We want maximal protection against all enemies

Why “all enemies”?
Passwords are used in almost all contexts, even if supplemented by 2FA

Authentication 48 / 56



What’s the First Question?

What are we trying to protect, and against whom?
That’s always the first question! So: what are we trying to protect?
We have to protect the plaintext password—possession of it gives access
to this site and (probably) many others
We want maximal protection against all enemies

Why “all enemies”?

Passwords are used in almost all contexts, even if supplemented by 2FA

Authentication 48 / 56



What’s the First Question?

What are we trying to protect, and against whom?
That’s always the first question! So: what are we trying to protect?
We have to protect the plaintext password—possession of it gives access
to this site and (probably) many others
We want maximal protection against all enemies

Why “all enemies”?
Passwords are used in almost all contexts, even if supplemented by 2FA

Authentication 48 / 56



First Step

Never store passwords in plaintext—what if the machine with the
password store is hacked?
Use hashed passwords, not encrypted passwords. (Why?)
Implication: no password recovery, only password reset
What’s next?

Authentication 49 / 56



Second Step

Assume that the machine holding the hashed passwords is hacked—now
what?

Harden the hash against password-guessing
This is as far as Morris and Thompson went—is there more?

Authentication 50 / 56



Second Step

Assume that the machine holding the hashed passwords is hacked—now
what?
Harden the hash against password-guessing
This is as far as Morris and Thompson went—is there more?

Authentication 50 / 56



Third Step

In 1979, computers were expensive; passwords were generally entered
over dial-up phone lines
Governments could do modem taps; few others could
Today, passwords are entered over the Internet—much easier to tap
Conclusion: we must use encryption
More?

Authentication 51 / 56



Fourth Step

Passwords today are mostly for web services, but web servers are fragile
Conclusion: store the hashed passwords on a login server that is
(somehow!) less vulnerable to being hacked
Ideally, encrypt the password from the user to the login server, so that
even the web server can’t see it (but this is rarely done)
More?

Authentication 52 / 56



The User Perspective

The above is a server-centric perspective
Users have to worry about many sites, not just one or two
In Morris and Thompson’s day, very few people had more than one
login—today, many people have hundreds of logins
User perspective: some sites will be hacked—how do they protect their
logins on other sites?

Answer: you must use a separate password for each site
Thought exercise: does it work to have separate classes of password, for
sites of different sensitivity?

Authentication 53 / 56



The User Perspective

The above is a server-centric perspective
Users have to worry about many sites, not just one or two
In Morris and Thompson’s day, very few people had more than one
login—today, many people have hundreds of logins
User perspective: some sites will be hacked—how do they protect their
logins on other sites?
Answer: you must use a separate password for each site
Thought exercise: does it work to have separate classes of password, for
sites of different sensitivity?

Authentication 53 / 56



Why Didn’t Morris and Thompson Go Further?

Technology of the time!
The external attack surface for a computer of that era was typically very
small: the login service

R Networking was in its infancy
Users had no local compute capacity and little or no local storage
A separate login computer would have cost (at a minimum) tens of
thousands of dollars; it and the network would have been an additional
availability failure point
What do you do with a stolen password file? Compute time was expensive
and not that readily available

The worse mistake in technology is to give yesterday’s answers to today’s
questions. The second worse mistake is to ignore yesterday’s answers. . .

Authentication 54 / 56



Why Didn’t Morris and Thompson Go Further?

Technology of the time!
The external attack surface for a computer of that era was typically very
small: the login service

R Networking was in its infancy
Users had no local compute capacity and little or no local storage
A separate login computer would have cost (at a minimum) tens of
thousands of dollars; it and the network would have been an additional
availability failure point
What do you do with a stolen password file? Compute time was expensive
and not that readily available

The worse mistake in technology is to give yesterday’s answers to today’s
questions. The second worse mistake is to ignore yesterday’s answers. . .

Authentication 54 / 56



Implicit Constraints

Some of the constraints Morris and Thompson faced were implicit
Their threat model wasn’t as clearly spelled out as would do today
Getting this things right is crucial, especially for security for long-lasting
systems
Do you have an ongoing process for monitoring changes in technology and
threat model?

Authentication 55 / 56



Questions?

(Red-bellied woodpecker, Riverside Park, December 20, 2021)


	Analyzing Password Security Practices

