
Fuzzing

Steven M. Bellovin April 17, 2020 1



Fuzzing

• A way to find input-parsing bugs by randomly or systematically
modifying input streams

• Can be random (no knowledge of input formats), smart (handles input
formats, checksums, etc.), black box (smart, but with no validation of
code coverage), or white box (systematically test different code paths)

• Input data can be generated automatically or by mutating valid inputs

• Extremely powerful technique, used by testers and attackers

Steven M. Bellovin April 17, 2020 2



Why Does Fuzzing Work?

• It exercises seldom-tested code paths

• It pushes boundary conditions

• Note: tester must use other tools to look for memory leaks,
deadlocks, code coverage, etc.

Steven M. Bellovin April 17, 2020 3



Who Fuzzes?

• Developers

• Security testers

• Quality assurance groups

• Attackers. . .

Steven M. Bellovin April 17, 2020 4



Security Scanners versus Fuzzers

• Scanners are reactive—they only find known problems

• Fuzzers can find unknown problems

• (Similar issue with regression testing)

Steven M. Bellovin April 17, 2020 5



Fuzzing Isn’t Ordinary Testing

• Ordinary testing checks if code meets the requirements

• “Input lines longer than 512 characters must be rejected”

• In other words, it finds knowable issues—and possibly not correctly

• A test suite might have a 513-character line, which the program
rejects—but perhaps a 5120-character line will cause a buffer
overflow before that check happens

Steven M. Bellovin April 17, 2020 6



The Linux Man Page for gets()

gets() returns s on success, and NULL on error or when end of
file occurs while no characters have been read. However, given
the lack of buffer overrun checking, there can be no guarantees
that the function will even return.

In other words, a gets() read into a 513-byte buffer can be used for 512
bytes or to detect 513 bytes—but a longer input line may never reach the
check.

Steven M. Bellovin April 17, 2020 7



Goals: Testing versus Fuzzing

• Testing: Find which requirement isn’t met

• Fuzzing: Generally, crash the program under test

• Fuzzing is not about finding vulnerabilities per se, but most
fuzzing-induced crashes can be turned into exploits

Steven M. Bellovin April 17, 2020 8



Fuzzing Usually Isn’t Random Input

$ nc www.cs.columbia.edu 80 </dev/urandom

HTTP/1.1 400 Bad request

content-length: 90

cache-control: no-cache

content-type: text/html

connection: close

<html><body><h1>400 Bad request</h1>

Your browser sent an invalid request.

</body></html>

Steven M. Bellovin April 17, 2020 9



By Contrast
$ nc eu.httpbin.org 80
GET /fa4bfb50d9e3e826860eecbd86d623e7cddb HTTP/1.0

HTTP/1.1 404 NOT FOUND
Date: Tue, 14 Apr 2020 18:02:35 GMT
Content-Type: text/html
Content-Length: 233
Connection: close
Server: gunicorn/19.9.0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>404 Not Found</title>
<h1>Not Found</h1>
<p>The requested URL was not found on the server. If you entered the
URL manually please check your spelling and try again.</p>

Steven M. Bellovin April 17, 2020 10



Which is More Likely to Find Problems?

• Simple nonsense is easy to reject—for HTTP, just see if the first few
characters match a valid command

• Syntax-driven fuzzing can find deeper problems

• Better yet: follow the state machine

Steven M. Bellovin April 17, 2020 11



Fuzzing and Protocol States

• Protocols often have different states

• You can’t test behavior in a later state if you don’t reach it
successfully, generally via valid inputs

• Example: you can’t fuzz an HTTPS-only website if you never
successfully negotiate the TLS connection

Steven M. Bellovin April 17, 2020 12



Fuzzing Strategies

• Knowledge of generic input is necessary

• Two broad types: generation and mutation fuzzers

• Both have their uses

Steven M. Bellovin April 17, 2020 13



Generation Fuzzers

• Typically start with a grammar (perhaps in BNF) of the accepted
language

• Generate random inputs that match that grammar

• Include special notation for, e.g., length fields, checksums, etc.

• Note: obviously, grammars are different for binary protocols than for
ASCII or Unicode

Steven M. Bellovin April 17, 2020 14



Mutation Fuzzers

• Provide samples of valid inputs

• The fuzzer generates changes to the valid input

• Again, there are special provisions for things like length fields

• Of course, invalid length fields are also interesting. . .

Steven M. Bellovin April 17, 2020 15



Hybrid Approaches

• Some fuzzers do both

• Often: use one approach to get to some protocol level, then switch to
another

• Some use libraries of known troublesome patterns, e.g., filenames
with /../../../../etc/passwd in them

• Sometimes, this is a good spot for random inputs

Steven M. Bellovin April 17, 2020 16



When Fuzzing Fails

• Suppose, over the history of a project, you’ve been fuzzing a module,
and finding and fixing bugs

• One day, fuzzing no longer crashes it

• Is it now (security) bug-free? Or are there bugs that the current fuzzer
can’t find?

Steven M. Bellovin April 17, 2020 17



The Pesticide Paradox

• Any testing method leaves a residue of subtle bugs it couldn’t find

• This lets the complexity of the code grow

• We’ve eliminated the easy bugs, leaving subtle ones

• Conclusion: when fuzzing doesn’t find bugs, fuzz harder!

Steven M. Bellovin April 17, 2020 18



Black Box, White Box

• Black box fuzzing: go after the binary, with no knowledge of the
source code

• White box: use the source to guide fuzzers

+ Can measure code coverage

+ Can test using hidden or undocumented parameters

Steven M. Bellovin April 17, 2020 19



Levels of Fuzzing

• Individual routines, via unit test frameworks or in-memory changes

• Single programs

• Network APIs

• Files

• All the myriad ways that web servers can fail

Steven M. Bellovin April 17, 2020 20



History of Fuzzing

• Some early work in the 1970s and 1980s

• (As an undergraduate, my friends and I would sometimes feed object
files to a compiler, to see how crazily it would react, but we had no
deeper motive)

• Early testing of TCP/IP—you could get points for “KOing your
opponent”, i.e., crashing another implementation

• More formal use in software testing in the 1990s; some academic
interest

• 1999–2001: Oulu University, Finland

Steven M. Bellovin April 17, 2020 21



Oulu University

• In 1999, they built the PROTOS fuzzer, which they used to fuzz many
important network protocols

• They found many flaws, most importantly in SNMP

• SNMP: Simple Network Management Protocol

• Used by ISPs and many enterprises to monitor routers and other
network elements

• Everyone had to patch on short notice. . .

• This put fuzzing on the map—and since some of the problems found
were security problems, it put fuzzing on the security map

Steven M. Bellovin April 17, 2020 22



Why SNMP?

• SNMP packets are defined using ASN.1 (Abstract Syntax Notation 1)

• ASN.1 is very complex; the field definitions are translated into C by a
compiler

• Many implementations used the same compiler. . .

Steven M. Bellovin April 17, 2020 23



An ASN.1 Example from SNMP
GetRequest-PDU ::=

[0]
IMPLICIT SEQUENCE {

request-id
RequestID,

error-status -- always 0
ErrorStatus,

error-index -- always 0
ErrorIndex,

variable-bindings
VarBindList

}
Steven M. Bellovin April 17, 2020 24



Why Fuzzing?

• More precisely, why am I talking about fuzzing in this class, which
focuses on system security?

• What do we fuzz?

• Why?

• What do we do with the answers?

Steven M. Bellovin April 17, 2020 25



What is the Lesson of the SNMP Problem?

• ASN.1 is complex; therefore, there is (probably) a large attack surface

• There was a common mode failure: a single compiler

• The defenses either failed or weren’t deployed

Steven M. Bellovin April 17, 2020 26



SNMP Authentication via the “Community”
String

COMMUNITY-BASED-SNMPv2 DEFINITIONS ::= BEGIN
-- top-level message

Message ::= {
SEQUENCE {

version
INTEGER {

version(1) -- modified from RFC 1157
},

community -- community name
OCTET STRING,

data -- PDUs: SNMP commands
ANY

}
}

END

Steven M. Bellovin April 17, 2020 27



What’s the Problem?

• The community string—the password—is encoded in ASN.1, too

• The compiled code has to parse the over-the-wire ASN.1 to extract
and then validate the password

• But the parser was buggy. . .

• That is: the authentication mechanism was in a module with a very
high attack surface

+ Fuzzing exposed, as an implementation issue, what should have
been clear as an architectural point

Steven M. Bellovin April 17, 2020 28



(We Could Have Lost the Internet!)

• This was a critical vulnerability; ISPs had to patch or install filtering
immediately

• But—major ISPs test new vendor software releases for months
before putting them into production

• Even installing packet filters is risky—you can accidentally lock
yourself out

Steven M. Bellovin April 17, 2020 29



Suggested Mitigations

• The mitigations that CERT suggested are also interesting

• Disable SNMP—but ISPs can’t

• Ingress filtering—block SNMP packets from outside the ISP network

• Block the SNMP port from unauthorized nternal hosts—good idea for
enterprises, but not very applicable to ISPs

• Put SNMP on a separate management network only

• What do these tell us?

• Let’s look at an ISP topology

Steven M. Bellovin April 17, 2020 30



(Simplified) ISP Backbone

POPs are connected by backbone links

Steven M. Bellovin April 17, 2020 31



Point of Presence (POP)

R1 R2

access router access router access routeraccess router

A4

NOC

A1 A2 A3

Customers and peers (other ISPs) are connected to access routers A1,
A2, A3, A4; inter-POP links are via backbone routers R1 and R2

Steven M. Bellovin April 17, 2020 32



Managing this Network

• How does the NOC connect?

• Primarily in-band: over the Internet

• Is this wise?

• And what about after the SNMP fuzzing result?

Steven M. Bellovin April 17, 2020 33



A Management Network

• Add a separate management network

• Only allow SNMP over it

• But what about reliability?

Steven M. Bellovin April 17, 2020 34



A POP with a Management Network

R1 R2

access router access router access routeraccess router

Management

A1 A2 A3 A4

Steven M. Bellovin April 17, 2020 35



Managed Backbone

Steven M. Bellovin April 17, 2020 36



Reliability

• ISPs require reliability

• They must have the ability to manage all of their devices

• Single points of failure—like a management network or a special
management router—are not acceptable

• ISPs do have management networks—but they’re backups to
over-the-Internet management, which provides two independent
paths to every element

• We have to secure the Internet path!

Steven M. Bellovin April 17, 2020 37



Securing Many Routers

• Suppose you need to push out filters to many, many routers. How do
you do this?

• This is only feasible if you’ve prepared in advance, if you have tools to
manage all of your endpoints

• You can’t possibly hand-edit thousands of routers’ configuration files

• Tool-building always pays for for sysadmins. . .

Steven M. Bellovin April 17, 2020 38



Design for Management

• For enterprises, you have to design things to be managed

• System management has many different pieces: monitoring network
elements and servers, pushing configuration changes, patching
software, diagnosing and rebooting machines, tracking which laptops
haven’t been patched, etc.

• Example: how do you secure access to a power bar, a device that
lets you power-cycle a computer remotely? What if it doesn’t support
your preferred style of authentication?

Steven M. Bellovin April 17, 2020 39



Where Else is ASN.1?

• If SNMP was vulnerable because of ASN.1, what else uses ASN.1?

• TLS, S/MIME, anything involving X.509 certificates

• Why? Because they were dealing with complex, over-the-wire data
structures, with varying precision integers, varying length strings,
optional fields, and more

• This all has to work on many different computer architectures

• Some form of binary field description language is needed

• Also: the IETF decided to use OSI’s X.509 certificate format; it was
defined in ASN.1

• (There’s a long political story about that, too)

Steven M. Bellovin April 17, 2020 40



Dealing with ASN.1 Software

• Anything that uses ASN.1 can be presumed to have a high attack
surface

• How do we handle this?

• Can we

1. Secure ASN.1?

2. Stop using ASN.1?

3. Isolate it?

4. Something else?

• None of the choices are great. . .

Steven M. Bellovin April 17, 2020 41



Securing ASN.1?

• Nope!

• Remember the actual problem statement: not that it’s insecure, but
rather, that it has a high attack surface

• We can try to audit the code, test the code—and fuzz the code

• Architecturally, though, we want to move it out of critical locations

Steven M. Bellovin April 17, 2020 42



Stop Using ASN.1?

• Not possible—too many essential services rely on it

• You can’t run a web site without TLS

• You can’t run enterprise-grade router complexes without SNMP

• Many VPNs require X.509 certificates

Steven M. Bellovin April 17, 2020 43



Isolation?

• Sometimes, we can isolate ASN.1 software

• More precisely, we can parse it where failures are less harmful

• But this isn’t always possible

Steven M. Bellovin April 17, 2020 44



Isolating TLS

Web Server Web Server

Router Router

Inverse
Proxy/

Load BalancerLoad Balancer
Proxy/
Inverse

Router Router

Database Database Database
Routers

Database

Web Server

To Back Ends

ISP ISP

• We can terminate TLS on the load
balancers or on the web servers

• If a load balancer is hacked, active
traffic can be sniffed and the web
server is more open to attack

• If a web server is hacked, the
attacker has direct access to the
databases—far more serious!

• Conclusion: it’s safer to terminate
TLS on the load balancer

Steven M. Bellovin April 17, 2020 45



VPNs

• VPN gateways handle encryption and decryption—but they’re also
access control points

• If one is hacked, anyone can get into the network

• If we offloaded the certificate processing and that machine was
hacked, it wouldn’t validate certificates properly, so attackers could
still get in

• Conclusion: we cannot isolate a VPN gateway; all we can do is
monitor it

Steven M. Bellovin April 17, 2020 46


