
Security Evaluation

Steven M. Bellovin March 29, 2020 1



Analyzing Systems

• When presented with a system, how do you know it’s secure?

• Often, you’re called upon to analyze a system you didn’t design —
application architects and programmers build it; security people get to
pick up the pieces. . .

• It’s better to build security in from the start, but that doesn’t happen
nearly as often as it should

Steven M. Bellovin March 29, 2020 2



When to Analyze

• The earlier, the better

• Some design decisions are very hard to correct later on

• Better yet, have frequent reviews

• Early reviews concentrate on the broad architecture; later reviews can
look at the pieces

Steven M. Bellovin March 29, 2020 3



Types of Analysis

• Individual programs

• Overall system flow

• Usually, a faulty program means a faulty system, but sometimes faults
are containable

• Let’s look at system analysis

Steven M. Bellovin March 29, 2020 4



Analyzing Systems

• Both easier and harder

• Easier, because there are fewer components than lines of code

• Harder, because many of the details are abstracted away

Steven M. Bellovin March 29, 2020 5



The Usual Questions

• Who are the attackers?

• What might they want?

Steven M. Bellovin March 29, 2020 6



Overall Flow

• Identify the separate system elements

• Identify the data flows

• Look for security barriers

• Look for untrusted inputs

Steven M. Bellovin March 29, 2020 7



System Elements

• System elements are things like web servers, database engines, etc.

• Each of these is itself a complex system that needs to be analyzed

• Establish the properties of each element: where its inputs come from,
what its outputs are, what can happen if something is corrupted

Steven M. Bellovin March 29, 2020 8



Protecting Elements

• What are the forms of access?

• What sorts of access controls are there?

• What is logged? To where? (Who looks at the logs?)

Steven M. Bellovin March 29, 2020 9



Data Flows

• Who talks to whom?

• How do they talk?

• Is the link exposed to the outside? Is it encrypted? Authenticated?

• Is the protocol otherwise safe?

Steven M. Bellovin March 29, 2020 10



Security Barriers

• Do they block all attack vectors?

• Are they strong enough?

• Are they flexible enough?

Steven M. Bellovin March 29, 2020 11



Input Filtering

• Where can enemy input enter the entire system?

• Is it properly checked?

• What about back channels, such as DNS?

Steven M. Bellovin March 29, 2020 12



System Management

• How will the elements be managed?

• Is more connectivity needed?

• Are other network services used?

• How do system management functions authenticate themselves?

Steven M. Bellovin March 29, 2020 13



Backups

• How are disks backed up?

• Again, is more connectivity needed?

• How are the backup media protected?

Steven M. Bellovin March 29, 2020 14



Drilling Down

• Is there other connectivity, such as to the organization?

• If there isn’t now, might there be in the future? (The answer to that
one is usually “yes”. . . ) What provisions are made for such
connectivity?

• What parts of the design seem more vulnerable?

Steven M. Bellovin March 29, 2020 15



Weak Spots

• What parts of the design seem problematic?

• Some pieces are weaker than others

• Experience counts here — “trust your feelings, Luke”

Steven M. Bellovin March 29, 2020 16



Weak Spots: Web Server

• Web servers are quite complex

• CGI or ASP scripts are often locally written, and may have received
less scrutiny

• How is the web server checked for intrusions?

• What are the consequences if it falls?

Steven M. Bellovin March 29, 2020 17



Simple Example: Mobile Phone Service

Steven M. Bellovin March 29, 2020 18



How Do We Analyze This?

• Three elements: a phone, a service platform (the mobile phone
switch), and the radio link between them

• What can an attacker do?

+ Hack the phone, hack the switch, eavesdrop on traffic, steal phone
service

• What are our defenses?

Steven M. Bellovin March 29, 2020 19



Defenses

Stealing phone service Strong authentication, these days via a SIM. (25
years ago, some phones (effectively) used a plaintext password—and
yes, it was possible to steal phone service. More on that below.

Eavesdropping Encrypt the radio link

Steven M. Bellovin March 29, 2020 20



Hacking the Phone

Locally Not the phone company’s problem! (That’s another reason for
SIMs)

Over the Air Who is the enemy? An outside party? Or the phone
company?

Outsiders Hacking Phones Encryption to protect the radio link—but
must also protect the service platform. We’re missing components!

Phone Companies Hacking Phones The user’s problem? The vendor’s
problem? Note: security analyses depend on viewpoint!

Other Customers Hacking Phones The user’s problem? The vendor’s
problem?

Steven M. Bellovin March 29, 2020 21



Hacking the Switch

• Can the phone switch be hacked over the air?

• What is the attack surface?

• High—it has to be available to phones, and the protocol is very
complex

Steven M. Bellovin March 29, 2020 22



Can We Firewall the Switch?

• No—its essential function, talking to mobile phones, is the most
vulnerable point

• We have to harden it—and make sure there is a lot of intrusion
detection

Steven M. Bellovin March 29, 2020 23



More Complex Example: Mobile Phone Service

Steven M. Bellovin March 29, 2020 24



We’ve Added Billing

• Many new elements and links

• We need to look at internal hacking and internal links, e.g., what is
the risk if the links aren’t encrypted?

• And: we have a new external link: to the credit card processor

Steven M. Bellovin March 29, 2020 25



How Risky is a Credit Card Processor?

• You’d think it was pretty safe—they’re handling lots of valuable
financial data

• But: credit card processors have been hacked

• But: there is actually an input channel from the processors, to notify
of, e.g., chargeback problmes

Steven M. Bellovin March 29, 2020 26



Quasi-Realistic Example: Mobile Phone Billing

Steven M. Bellovin March 29, 2020 27



New Important Elements

• Customer’s browser—talks to web server to create and review
account; update data

• Customer care—touches many places

• External vendor for tax rates

• A log file database

Steven M. Bellovin March 29, 2020 28



Tax Rate Vendor?

• There are many, many jurisdictions in the US alone

• Many will tax phone service, but at different rates

• In the US, cities can have their own taxes on top of the state tax rate

• A phone company shouldn’t track this, so it buys database updates
from an external vendor

Steven M. Bellovin March 29, 2020 29



Browser Activity

• Customer browsers are utterly untrustworthy—but they have to touch
the user database

• Can we trust the web server?

• What is the attack surface of a web server?

• High!

• We can firewall it from the rest of the billing complex—but it has to
touch a vital database

• Needed: an application-level filter between the web server and the
database

Steven M. Bellovin March 29, 2020 30



Customer Care

• Vital role—helps people; corrects errors from buggy code or from
customer misperception

• A major risk, but one that’s unavoidable

• Also: what about a dishonest customer care agent?

Steven M. Bellovin March 29, 2020 31



Securing Customer Care

• The customer care web server is a vital filter—it processes potentially
dangerous inputs

• But—it’s a web server, with all that implies for its attack surface and
hence its security

• We need application-level filters between it and any database it
touches

• Plus: we need logging and auditing

Steven M. Bellovin March 29, 2020 32



Logging

• Utterly vital—you need logs to know what happened

• But: hackers love to mess with log files

• So: we need to put log files on a separate, secure machine

Steven M. Bellovin March 29, 2020 33



Outputs of a Review

• Description of the threat model: resources, enemies, and their powers

• Prioritized list of weak points

• Prioritized list of improvements

• Go/Fix/No-go recommendation

Steven M. Bellovin March 29, 2020 34



(Abbreviated) Threat Model: Resources

• Service availability

• Billing integrity (accuracy, no theft of service, etc.)

• Conversation confidentiality

• System integrity

• Out of scope: phone integrity, unless it’s a telco element that was
corrupted to permit attacks on the phones

Steven M. Bellovin March 29, 2020 35



(Abbreviated) Threat Model: Attackers

• Ordinary consumers: bill integrity

• Hackers: system integrity and availability, maybe conversation
confidentiality

• Intelligence agencies: service availability, conversation confidentiality,
system integrity

Steven M. Bellovin March 29, 2020 36



Billing: Once a Bad Threat Model

• Despite no encryption, telcos thought that account spoofing was very
hard

• But: the rate of “password”-stealing and phone cloning was much
higher than expected

• Why?

Steven M. Bellovin March 29, 2020 37



It Wasn’t the Cost!

• Drug dealers were happy to pay for phones not linked to them (they
used one-way pagers for alerts, and then made outgoing calls to
clients and suppliers)

• There was test gear on the market that could pick up “passwords” and
reprogram phones with it and the associated phone number

• Pattern: buy a phone, pay an electronics tech to give you a new
number, use it for a week, pay again

• Result: by the time police found the number and got a wiretap
warrant, they were using a different number and maybe even a
different phone

• Telcos got the threat model wrong. . .

Steven M. Bellovin March 29, 2020 38



Recommendations

1. Add an auditing function

2. Add firewalls as indicated

3. Review internal sysadmin connectivity and security

4. Consider encryption for internal links

Steven M. Bellovin March 29, 2020 39



Rationale

Auditing There are very important but unavoidable very risky elements

Firewalls Add a layer of defense to cope with some of these at-risk
elements

Sysadmin Review There are crucial, privileged functions that have not
yet been audited. But this is lower priority than the other two, because
those are known problems

Encryption Internal links may be safe enough; certainly, they’re less of a
risk than the other items

Steven M. Bellovin March 29, 2020 40



Revised Network Diagram

(Recommended firewalls not shown)
Steven M. Bellovin March 29, 2020 41



Auditing

• Log files don’t do any good if you never look at them

• We must have an audit process

• Automated log file analysis, to spot problems or attacks

• Manual auditing: a good database, good query languages, etc.

• Manaul, routine checking of a subset of entries, to validate the logging

Steven M. Bellovin March 29, 2020 42



Outcomes of a Review

• All is cool (don’t be afraid to say so, but it rarely happens. . . )

• A few fixable flaws

• Serious, unfixable problems

• Not deployable

Steven M. Bellovin March 29, 2020 43



Serious, Unfixable Problems

• There may be flaws that can’t easily be fixed

• Example: a piece of vital third-party software that does stupid things

• Can you layer on something else to provide necessary protection?

• Example: to protect a vendor product that sends plaintext passwords
oer the network, you could add a VPN

Steven M. Bellovin March 29, 2020 44



Not Deployable

• Sometimes, that’s the right answer

• However — how important is the project?

• What is the business cost of not deploying it?

• It’s important to be both honest and realistic — and that’s a delicate
balancing act

Steven M. Bellovin March 29, 2020 45



Software Engineering Code of Ethics

1. PUBLIC—Software engineers shall act consistently with the public
interest.

2. CLIENT AND EMPLOYER—Software engineers shall act in a manner
that is in the best interests of their client and employer consistent with
the public interest.

3. PRODUCT—Software engineers shall ensure that their products and
related modifications meet the highest professional standards
possible.

4. JUDGMENT—Software engineers shall maintain integrity and
independence in their professional judgment.

. . .

(See https://ethics.acm.org/code-of-ethics/software-engineering-code/ for the rest.)

Steven M. Bellovin March 29, 2020 46

https://ethics.acm.org/code-of-ethics/software-engineering-code/


Making “No” Stick

• Be prepared to back up your assessment

• Demonstrate exactly how an enemy could get in

• Estimate the likelihood of the attack

• Estimate the business loss if it happens

• If you can’t do that, it’s more likely the previous category

Steven M. Bellovin March 29, 2020 47



Bad Excuses You’ll Hear

• It’s closed source; no one knows how it works

+ It’s a lot easier to figure such things out than it appears to those
who have never done it

+ What about corrupt insiders?

• Who’d attack us?
+ Some people will attack anything

• No one would try that
+ Some people will try anything

Steven M. Bellovin March 29, 2020 48



Making Recommendations

• This is often a political process

• Concrete suggestions for improvement are better than “this is awful!”

• Suggestions should be realistic in terms of cost, benefit, and
business situation

• Security is engineering; it’s not an absolute goal to be pursued at any
cost

• There are always legacy systems you can’t touch

Steven M. Bellovin March 29, 2020 49



“No” Can Win

• We showed the strong possibility of a devastating outcome

+ Management backed up the security team’s evaluation

• We all agreed that a small-scale beta trial could find functionality
problems and did not present serious risks

• Compromise: do the beta trial during the six months it would take to
rearchitect and rewrite the offending subsystem

Steven M. Bellovin March 29, 2020 50


