
Complexity and Security

Steven M. Bellovin March 13, 2020 1

An Early Warning

“Finally, although the subject is not a pleasant one, I must mention PL/I, a
programming language for which the defining documentation is of a
frightening size and complexity. Using PL/I must be like flying a plane with
7,000 buttons, swithces, and handles to manipulate in the cockpit. I
absolutely fail to see how we can keep our growing programs firmly within
our intellectual grip when by its sheer baroqueness the programming
language—our basic tool, mind you!—already escapes our intellectual
control. . . .

“When FORTRAN has been called an infantile disorder, full PL/I, with its
growth characteristics of a dangerous tumor, could turn out to be a fatal
disease.”

Edsger W. Dijkstra, 1972
Steven M. Bellovin March 13, 2020 2

Complexity is Bad

• We’ve known since the beginning of computers that it’s hard to write
correct code

• We’ve known for decades that complexity leads to buggy code.

• Why?

Steven M. Bellovin March 13, 2020 3

Perfection

First, one must perform
perfectly. The computer
resembles the magic of
legend in this respect,
too. If one character, one
pause, of the incantation
is not strictly in proper
form, the magic doesn’t
work.
Frederick P. Brooks, Jr.,

The Mythical Man-Month

• Code has to be (nearly) perfect to work

• The more complex it is, the harder it is
to grasp all of it, end to see the
interactions between the different
pieces

• In theory, code’s mental complexity is
O(n2) in the number of lines of code

• The goal of modularization techniques
is to cut that to O(m(nm)2 + (mε)2):
code in each module interacts only
within the module, plus APIs to other
modules

Steven M. Bellovin March 13, 2020 4

Security

“If our software is buggy, what does that say about its security?”

Robert H. Morris

Steven M. Bellovin March 13, 2020 5

Buggy Code is Insecure Code

• Bugs are just as likely in security-sensitive code as in “ordinary”
application code

• Example: an open source Yubikey server has a really bad SQL
injection attack

• Security-sensitive code has to be correct, or it might be insecure

• How?

Steven M. Bellovin March 13, 2020 6

https://www.yubico.com/support/security-advisories/ysa-2020-01/

The Fundamental Problem

• The real issue: interaction

• To be secure, a program must minimize interactions with the outside

• All interactions must be controlled

Steven M. Bellovin March 13, 2020 7

Relative Attack Surface Quotient

• RASQ: Relative Attack Surface Quotient

• Microsoft metric of how vulnerable an application is

• Roughly speaking, it measures how many input channels it has

• Must reduce RASQ

Steven M. Bellovin March 13, 2020 8

Not All Channels Are Equal

• Some channels are easier to exploit

• Some are more accessible to attackers

• Some have a bad track record

Steven M. Bellovin March 13, 2020 9

RASQ Examples

• Weak ACLs on shared files: .9—names are generally known; easy to
attack remotely

• Weak ACLs on local files: .2—only useful to attacker after initial
compromise

• Open sockets: 1.0—potential target

Steven M. Bellovin March 13, 2020 10

Note Well: Relative

• We cannot assign an absolute value to attack surface

• We can compare two different alternatives

• In other words, we do not say “this is insecure”; rather, we say “this is
less secure”

Steven M. Bellovin March 13, 2020 11

Note Well: Attack Surface

• We are also not measuring code correctness

• Rather, we are measuring how many points an attacker can try to
exploit

• RASQ says nothing about whether, say, socket-handling code is
correct or not; rather, it says “Danger: here is socket code”

• We can compare two programs to see which has fewer danger points

• It also points us at areas of code that demand more scrutiny and
more testing

Steven M. Bellovin March 13, 2020 12

Reducing RASQ: A Management Issue

• RASQ is a tool; you have to use it properly

• Example: Microsoft decreed that the RASQ of a subsystem could not
go up

• The security group reviewed all code and had the authority to block
anything from shipping

• Security is partially a management problem

Steven M. Bellovin March 13, 2020 13

Security and Complexity

• Complex code is buggy and hence insecure

• We thus have four challenges

1. To the extent possible, eliminate complexity

2. Protecting the unavoidably complex (i.e., buggy) application code
from attackers

3. Presenting a simple interface to the world

4. Ensuring that our security code is simple

Steven M. Bellovin March 13, 2020 14

Reducing Complexity

Rule 1 Follow standard advice on good programming, modularity, etc.

Rule 2 There is no Rule 2

Steven M. Bellovin March 13, 2020 15

Living with Complexity

• There are some unavoidably complex programs—there is no way to
build a simple web browser for today’s world

• (Personally, I think the web took a very dark turn with some of that
complexity, but I was outvoted)

• Strategy: security boundaries between some modules: isolate
complex code!

Steven M. Bellovin March 13, 2020 16

Example: Web Browsers

• Rendering HTML is inherently complex and risky: HTML comes from
the enemy

• JavaScript is even worse

• But: accepting user clicks keystrokes is not sensitive

• Copying a pixel string to the display is not complex

• So: let that guide your modularization

Steven M. Bellovin March 13, 2020 17

First Cut: Web Browser Design

• Process HTML in a separate process

• Probably handle JavaScript in yet another process

• Do the user interface in a third process

• Have a simple message-passing interface between the processes

• Why? Because processes are a security boundary; one process
cannot (to a first approximation) read or modify another process’
memory

Steven M. Bellovin March 13, 2020 18

Strengthening the Design

• Sandbox the risky processes

• Why? To protect the operating system (and hence user files) if the
complex code is buggy and insecure

• All current operating systems support some form of sandboxing

Steven M. Bellovin March 13, 2020 19

More Security Boundaries

• Web sites don’t trust each other

• You also don’t want user cookies leaking

• Have a process per site visited

• (It’s more complex than that; see the reading)

Steven M. Bellovin March 13, 2020 20

Guards

• Sometimes, it’s possible to put “guard” modules in front of complex
code

• Guards sanitize inputs, limit string lengths, etc.

• These can be buggy, too, of course—but formal specifications help

• Lexical analyzer generators, parser generators, etc., are your friend

Steven M. Bellovin March 13, 2020 21

What Went Wrong?

(From http://xkcd.com/327/)

Steven M. Bellovin March 13, 2020 22

http://xkcd.com/327/

SQL Injection Attacks

• Suppose a program is querying an SQL database based on a userID
and query string:

sprintf(buf, "select where user=\"\%s\" &&

query=\"%s\"", uname, query);

• What if query is

foo" || user="root

• The actual command passed to SQL is

select where user="uname" && query = "foo" ||

user="root"

• This will retrieve records it shouldn’t have

Steven M. Bellovin March 13, 2020 23

Input Sanitization?

• Simple answer: the student’s name wasn’t processed properly

• A name with quotes should have been rejected, or the quote mark
should have been escaped

• Input sanitization is a good idea—but robust design is better

Steven M. Bellovin March 13, 2020 24

Interface Design

• The deeper problem was the interface between the input module and
the database

• The program rendered it as a command string, necessitating a
parsing operation

• A better answer: use SQL stored procedures, avoiding the need for
parsing

Steven M. Bellovin March 13, 2020 25

Cheswick and Bellovin

“To paraphrase Einstein: make your security arrangements as simple as
possible, but no simpler. Complex things are harder to understand, audit,
explain, and get right. Try to distill the security portions down to simple,
easy pieces.”

Steven M. Bellovin March 13, 2020 26

How Do We Design Security-Sensitive Code?

• First and foremost: avoid complexity

• Second: modularization

• Third: proper interfaces

• In other words: the same basic principles, but here especially we
want to be guided by execution environments

Steven M. Bellovin March 13, 2020 27

A Look Back at Our Authentication Design

Developers

1. MFA use should be required,
including for social network
admins

2. U2F is probably the best
choice

3. Internal, locked-down
database

4. Recovery via management
chain and overnight shipping

Social Network Users

1. MFA should be available

2. U2F support is needed for
employees; TOTP with soft
tokens is more accessible to
most users

3. Separate database for
authentication only

4. Recovery via email, plus
password for token loss

Steven M. Bellovin March 13, 2020 28

Why Separate Authentication Databases?

• Simplicity of code: no need for as many conditionals

• Separation of modules: one module does employee authentication;
another does user authentication

• Isolation between modules: no way for the user authentication
module to grant employee privileges; that code simply does not exist
in that module

Steven M. Bellovin March 13, 2020 29

Protecting the Data

• Also: the user authentication module has no access to the employee
authentication database, which is more sensitive

• How do we protect either authentication database from the its
authentication module?

• Put the database on a separate server?

• Advantages and disadvantages—how do we analyze it?

Steven M. Bellovin March 13, 2020 30

Separating the Database

Advantages

• If the code is buggy and
insecure, the database isn’t
directly reachable

• The database can be
centralized, while login is
distributed (but is that a good
idea?)

Disadvantages

• We need another machine
(probably a minor issue)

• We need another interface

• There is extra code, and
perhaps extra complexity, to
sending queries and receiving
responses

• There is also a new failure
mode: the authentication
database isn’t reachable

Steven M. Bellovin March 13, 2020 31

How Do We Analyze This?

• Execution environment: with separate machines, harder for an
attacker to reach more data

• But: what is the interface like?

• If it’s SQL-like—select where user="foo"—the attacker can
dump the database or iterate through it

• We need a better interface: isvalid(user, pw, MFA)

• Note the difference: it’s a semantic interface that enforces the
separation of execution environments

• The server might even be able to do rate-limiting if each login server
has its own credentials to access the database

Steven M. Bellovin March 13, 2020 32

What’s the Answer?

• It depends!

• We are trading complexity for assurance

• The exact answer will vary, depending on the threat
environment—how likely is it that the login server will be
hacked?—and the complexity of the actual interface design

Steven M. Bellovin March 13, 2020 33

Implementation Issues

• If your coding environment has a good, simple way to pass complex
parameters safely, that reduces code complexity

• Examples: Python’s pickle module; JSON encoder/decoders, some
implementations of Remote Procedure Calls (RPC)

• The library may be more complex—but your code will be much
simpler

• (Do you trust the library vendor?)

• A good mechanism makes a separated databased more attractive

Steven M. Bellovin March 13, 2020 34

TLS Encryption

• Conceptually simple to set up

• Server: do crazy cryptographic handshakes, send client certificate
chain plus something signed

• Client: verify signature, verify certificate chain, verify certificate
validity, verify that the certificate contains the name you wanted to
connnect to

• So why do so many apps get this wrong?

Steven M. Bellovin March 13, 2020 35

OpenSSL

• OpenSSL does many, many things

• There are many options, e.g., the list of symmetric ciphers accepted,
the list of asymmetric ciphers, the list of hash functions, the key
lengths, and more

• There are different over-the-wire encodings, BER and DER

• OpenSSL provides low-level routines for all of this, but doesn’t have
the right high-level routines

• Consequence: programmers omit some validation steps

Steven M. Bellovin March 13, 2020 36

Other API Considerations

• Must protect keys—applications should not handle them

• Conclusion: do not provide any API to export keys, only to do things
like encrypt, decrypt, verify, etc.

• Sometimes, though, we need to move keys around

• Answer: an API to “wrap” keys by encrypting them with another key

• This creates complexity—but it is necessary complexity, to preserve
the proper execution environment

Steven M. Bellovin March 13, 2020 37

Language Protections

• Object-oriented languages are good for hiding interface details

• Example: C++ classes have public and private members

• This is not a strong security measure—injected machine code can
get at private data—so what is it good for?

• But: it keeps the programers from doing bad things

• And: it allows for a future, more secure implementation—perhaps use
an HSM?—if circumstances demand

• But: the real benefit is reduced code complexity

Steven M. Bellovin March 13, 2020 38

APIs

• API design is crucial

• It’s also difficult—it’s too easy to allow too much flexibility

• You can provide high-level routines that take the place of many
low-level calls—but if the low-level routines are there, someone will
use them

• Best guidelines: use good taste, and don’t supply unnecessary
options

• Yes, it’s hard

Steven M. Bellovin March 13, 2020 39

Complexity

• Complexity is the enemy of security

• Reducing complexity was one of the original motivations for firewalls.
In 1994, Bill Cheswick and I wrote

Corollary 3.1 (Fundamental Theorem of Firewalls) Most hosts
cannot meet our requirements: they run too many programs
that are too large. Therefore, the only solution is to isolate
them behind a firewall if you wish to run any programs at all.

• In those days, of course, firewalls were small and simple—and that’s
no longer true. . .

Steven M. Bellovin March 13, 2020 40

