Scanning
Goals
Useful Tools
The Basics
NMAP
Google Hacking

Scanning
Scanning

- Suppose you’re an attacker
- You want to attack a site
- How do you proceed?
Goals

- Find an interesting (or vulnerable) machine
- Find a vulnerable service
- Attack...
Useful Tools

- Ping
- Arp
- Dig
- Nmap
- rpcinfo; showmount
- Tcpdump
- Others, for special purposes
The Basics

Scanning

The Basics
Getting Started
What are the Hosts?
What Happened?
Enumerating Hosts
Other Information in the DNS
What Hosts Really Exist?
How About a Broadcast ping?
Off-LAN Broadcasts
ARP

NMAP

Google Hacking
What’s the first thing we know about the target?

The domain name!

Your probably know at least one host, too: www.domainname

There’s more in the DNS
Most hosts have DNS entries — can we list them?

First try — do “zone transfer”

Use `dig ns cs.columbia.edu` to learn the name servers

Pick one, then

```bash
$ dig axfr cs.columbia.edu @dns2.itd.umich.edu
; <<< DiG 9.3.2 <<< axfr cs.columbia.edu @dns2.itd.umich.edu
; (1 server found)
;; global options: printcmd
; Transfer failed.
```

But a different name server worked...
It’s possible to configure a name server to reject unauthorized zone transfer requests.

But most sites have multiple name servers; frequently, some are under different management (including 3 of 5 cs.columbia.edu name servers).

Not everyone has the same policy...
Enumerating Hosts

Learn the IP address of one host:
www.cs.columbia.edu is 128.59.18.180

Use `dig -x` on other IP addresses in the range:

```
for i in `seq 1 254`
do
dig -x 128.59.18.$i
done
```

Some sites give useless answers; 135.207.23.32 is H-135-207-23-32.research.att.com

Another caveat: watch out for smaller or larger nets
Other Information in the DNS

- **HINFO:**

 $ dig hinfo play.cs.columbia.edu.
m83.cs.columbia.edu. 3600 IN HINFO "AMD Athlon"
 "Ubuntu5.10"

- More: see WKS records, TXT records, NAPTR records, etc.

 $ dig wks cs.columbia.edu
cs.columbia.edu. 3600 IN WKS
 128.59.16.20 6 11 17 21 23 25 37 42 53 79
 111 119 67 69 161 162

- Of course, those might be wrong...
What Hosts Really Exist?

- The DNS lists what you think you have
- What do you really have?
- You can ping IP addresses

```bash
for i in 'seq 1 254'
do
    ping 128.59.23.$i
done
```
How About a Broadcast ping?

ping -L -r -w 100 128.59.23.255
PING 23-net.cs.columbia.edu (128.59.23.255): 56 data bytes
64 bytes from 128.59.18.102: icmp_seq=0 ttl=255 time=3.848
64 bytes from 128.59.20.155: icmp_seq=0 DUP! ttl=64
64 bytes from 128.59.22.252: icmp_seq=0 DUP! ttl=64
64 bytes from 128.59.22.7: icmp_seq=0 DUP! ttl=64 time=6.505
ping -L -r -w 100 128.59.23.255
PING 23-net.cs.columbia.edu (128.59.23.255): 56 data bytes
ping: sendto: Network is unreachable

- “Directed broadcasts” are blocked to prevent **Smurf** attacks
- Smurf attack: send a ping packet to a broadcast address, with the (forged) source address of your victim
- *Many* hosts will send back to it, using up lots of the victim’s bandwidth
If we’re on the same LAN, we can learn more via ARP:

```
# arp -a
mudd-edge-1.net.columbia.edu (128.59.16.1) at 00:d0:06:26:9c:00
dynasty.cs.columbia.edu (128.59.16.5) at 00:03:ba:14:a3:68
disco.cs.columbia.edu (128.59.16.7) at 08:00:20:9f:5a:cc
razor.cs.columbia.edu (128.59.16.8) at 00:01:02:82:77:2f
```

Note that the first three bytes of the MAC address tell who manufactured the card: 00:d0:06 is Cisco, 00:03:ba and 08:00:20 are Sun, etc.
NMAP

Scanning
The Basics

NMAP
The Network Map Tool
Finding Hosts
Finding Hosts on a LAN
Port-Scanning
The Real Truth About CS...
Trying it From Home
From CU Wireless
Sometimes It's Like This
Detecting Filtered Ports
ACK Scans
Avoiding Detection
UDP Ports
Mapping Versions
Local Software
Learning Versions
To Tell the Truth?
Fingerprinting
Evasive Action

Google Hacking
The Network Map Tool

- General-purpose scanner
- Does everything I’ve described and more
- Practically point-and-click scanning (but it’s command-line)
nmap -sP 128.59.23.0/21
Host mudd-edge-1.net.columbia.edu (128.59.16.1) appears to
Host dynasty.cs.columbia.edu (128.59.16.5) appears to
Host mailswitch.cs.columbia.edu (128.59.16.6) appears to
Host disco.cs.columbia.edu (128.59.16.7) appears to
Host razor.cs.columbia.edu (128.59.16.8) appears to
...
nmap -sP 128.59.23.0/21

Host mudd-edge-1.net.columbia.edu (128.59.16.1) appears to be alive.
MAC Address: 00:D0:06:26:9C:00 (Cisco Systems)

Host dynasty.cs.columbia.edu (128.59.16.5) appears to be alive.
MAC Address: 00:03:BA:14:A3:68 (Sun Microsystems)

Host mailswitch.cs.columbia.edu (128.59.16.6) appears to be alive.
MAC Address: 00:17:08:B5:41:00 (Hewlett Packard)

...
Port-Scanning

- Find out what ports are open on a machine
- Better yet, find out what applications are behind those ports
- Extras: avoid detection, detect firewalls, bypass some firewalls, etc.
nmap -p 1-200 cs.columbia.edu

Not shown: 195 closed ports

<table>
<thead>
<tr>
<th>PORT</th>
<th>STATE</th>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/tcp</td>
<td>open</td>
<td>ssh</td>
</tr>
<tr>
<td>25/tcp</td>
<td>open</td>
<td>smtp</td>
</tr>
<tr>
<td>53/tcp</td>
<td>open</td>
<td>domain</td>
</tr>
<tr>
<td>111/tcp</td>
<td>open</td>
<td>rpcbind</td>
</tr>
<tr>
<td>139/tcp</td>
<td>open</td>
<td>netbios-ssn</td>
</tr>
</tbody>
</table>

MAC Address: 00:03:BA:62:6A:39 (Sun Microsystems)

Nmap finished: 1 IP address (1 host up) scanned in 6.249

Many fewer ports than in the WKS record...
Trying it From Home

Scanning

The Basics

NMAP

The Network Map Tool
Finding Hosts
Finding Hosts on a LAN
Port-Scanning

The Real Truth About CS...

Google Hacking

From CU Wireless
Sometimes It's Like This
Detecting Filtered Ports
ACK Scans
Avoiding Detection
UDP Ports
Mapping Versions
Local Software
Learning Versions
To Tell the Truth?
Fingerprinting
Evasive Action

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/tcp</td>
<td>filtered</td>
<td>echo</td>
</tr>
<tr>
<td>9/tcp</td>
<td>filtered</td>
<td>discard</td>
</tr>
<tr>
<td>19/tcp</td>
<td>filtered</td>
<td>chargen</td>
</tr>
<tr>
<td>22/tcp</td>
<td>open</td>
<td>ssh</td>
</tr>
<tr>
<td>25/tcp</td>
<td>open</td>
<td>smtp</td>
</tr>
<tr>
<td>53/tcp</td>
<td>open</td>
<td>domain</td>
</tr>
<tr>
<td>111/tcp</td>
<td>open</td>
<td>rpcbind</td>
</tr>
<tr>
<td>135/tcp</td>
<td>filtered</td>
<td>msrpc</td>
</tr>
<tr>
<td>136/tcp</td>
<td>filtered</td>
<td>profile</td>
</tr>
<tr>
<td>137/tcp</td>
<td>filtered</td>
<td>netbios-ns</td>
</tr>
<tr>
<td>138/tcp</td>
<td>filtered</td>
<td>netbios-dgm</td>
</tr>
<tr>
<td>139/tcp</td>
<td>filtered</td>
<td>netbios-ssn</td>
</tr>
</tbody>
</table>
nmap -sA -p 1-200 www.cs.columbia.edu

<table>
<thead>
<tr>
<th>PORT</th>
<th>STATE</th>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>135/tcp</td>
<td>filtered</td>
<td>msrpc</td>
</tr>
</tbody>
</table>
Sometimes It’s Like This

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/tcp</td>
<td>filtered</td>
<td>compressnet</td>
</tr>
<tr>
<td>7/tcp</td>
<td>filtered</td>
<td>echo</td>
</tr>
<tr>
<td>36/tcp</td>
<td>filtered</td>
<td>unknown</td>
</tr>
<tr>
<td>116/tcp</td>
<td>filtered</td>
<td>ansanotify</td>
</tr>
<tr>
<td>132/tcp</td>
<td>filtered</td>
<td>cisco-sys</td>
</tr>
<tr>
<td>135/tcp</td>
<td>filtered</td>
<td>msrpc</td>
</tr>
<tr>
<td>147/tcp</td>
<td>filtered</td>
<td>iso-ip</td>
</tr>
<tr>
<td>157/tcp</td>
<td>filtered</td>
<td>knet-cmp</td>
</tr>
<tr>
<td>177/tcp</td>
<td>filtered</td>
<td>xdmcp</td>
</tr>
</tbody>
</table>

Different paths? Or a scan failure? Unclear.
Detecting Filtered Ports

- How does nmap detect a filtered service?
- A TCP SYN is normally answered with a SYN+ACK or a RST
- A filtered port generally returns nothing
ACK Scans

- Send a packet with the ACK bit set
- Gets through packet filters!
- Can’t distinguish between open and closed services; can be used to map firewall rules
Avoiding Detection

- If a program does a `connect()` call, the usual 3-way TCP handshake will occur.
- The application can log the fact and source of the connection.
- `Nmap` hand-crafts SYN packets, and responds to any SYN+ACK with RST.
- The TCP open never completes, so the application never notices and can’t log.
UDP Ports

- Send a UDP packet
- Watch for a response or an ICMP Port Unreachable
- No answer at all may indicate a filtered port
Mapping Versions

- Why do we want to?
- Particular applications may have (security) bugs
- Particular versions of particular applications may have (security) bugs
Local Software

```

Starting Nmap 4.11 ( http://www.insecure.org/nmap/ )
Interesting ports on shadow.cs.columbia.edu (128.59.23.100):
Not shown: 196 closed ports
PORT     STATE     SERVICE     VERSION
22/tcp   open     ssh        OpenSSH 3.9p1 (protocol 1.99)
25/tcp   open     smtp       Sendmail 8.12.10/8.12.10
80/tcp   open     http       Apache httpd 1.3.33 ((Unix) mod_ssl/2.8.22
111/tcp  open     rpcbind    2-4 (rpc #100000)
MAC Address: 00:03:BA:C5:A0:DD (Sun Microsystems)
Device type: general purpose
Running: Sun Solaris 8
OS details: Sun Solaris 8
Uptime 13.412 days (since Thu Oct 19 15:52:13 2006)
Service Info: OS: Unix
```
How does nmap get that data?

Many services announce it right away:

```
# telnet www.cs.columbia.edu 80
Trying 128.59.23.100...
Connected to shadow.cs.columbia.edu.
Escape character is '^[']'.
GET / HTTP/1.0
HTTP/1.1 200 OK
Date: Thu, 02 Nov 2006 05:49:38 GMT
Server: Apache/1.3.33 (Unix) mod_ssl/2.8.22 OpenSSL/0.9.7e
X-Powered-By: PHP/4.3.11
```

In other cases, it uses heuristics
To Tell the Truth?

$ dig version.bind txt chaos @kedu.cc.columbia.edu
version.bind. 0 CH TXT "9.2.6-P1"

$ dig version.bind txt chaos @cs.columbia.edu
VERSION.BIND. 0 CH TXT "surely you must be joking"

Hiding the version helps less than you might think
Various heuristics can be used to identify OS and version
Example: look at initial sequence number patterns, support for TCP options, initial window size, etc.
Get uptime from TCP timestamp option
Evaluate sequence number and IPid field predictability
But good guys need version numbers for site management
Net result: hiding version numbers tends to hurt the good guys more than the bad guys
Nmap has many techniques to avoid detection

Example: randomized scan orders, decoy hosts, zombies, bounce attacks, etc.

Nasty example: --badsum

Send packet with a bad TCP checksum

Hosts will drop such packets — but some IDS won’t...
Google Hacking
Many web sites are insecure

Probable insecurity is often detectable just by seeing what files are on the site, i.e., known-bad scripts

Google knows all...
The Santy Worm

- Use Google to find sites running the PHP Bulletin Board (phpBB)
- Take over the site via flaws in (some versions of) phpBB
- Repeat...
Sometimes, only a particular version of code is vulnerable

Include the version in the search string

Example: "Powered by Gallery v1.4.4"
Interesting Files

- `filetype:lit lit (books|ebooks)` will find Ebooks
- Database passwords inside PHP scripts: `filetype:inc intext:mysql_connect`
- Your favorite company’s name for closely-held documents: `filetype:doc "XXXX company confidential"
- Other queries will find password files, credit card numbers, etc.
Conclusions

- Scanning is a very powerful attack technique
- It’s very hard to hide from a clever scanning program