IPsec
IPsec

Encryption at Different Layers
Link Layer
IPsec
History
Why IPsec?
Protects All Applications
IPsec Structure
Some Packet Layouts
Tunnel and Transport Mode
Implementation Choices
IPsec Addressing
Security Associations
Topologies
Paths
Uses for IPsec
Outbound Packet Processing
Inbound Packet Processing
Security Policy Database: Theory
Security Policy Database: Reality
Triangle Routing
End-to-End ESP vs. Firewalls
Most layers have control information that must be decoded before decryption is possible — this must always be sent in the clear.

If the layer does demultiplexing, the information for that must be in the clear, too, to permit different keys for different destinations.

Anything higher-level is hidden.
Link Layer

- Framing information must be in cleartext
- Link layer (if used) addresses must be cleartext, to permit proper delivery
- Link layer type field must be cleartext
- Protects IP source and destination addresses — but only for that hop
- Common for especially-vulnerable links: WiFi, satellite downlinks, etc.
- Often used for access control
IPsec

- Network-layer security protocol for the Internet.
- Operates at the IP layer — has a cleartext IP header
- Completely transparent to applications.
  - Generally must modify protocol stack or kernel; out of reach of application writers or users.
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>First IETF version of IPsec</td>
</tr>
<tr>
<td>1998</td>
<td>Revised version with sequence numbers and authentication</td>
</tr>
<tr>
<td>2005</td>
<td>IPsec v3, for newer algorithms and larger sequence numbers</td>
</tr>
</tbody>
</table>

**History**

- **SP3**: Layer 3 security protocol for SDNS.
- **NLSP**: OSIfied version of SP3, with an incomprehensible spec.
- **swIPe**: UNIX implementation by Ioannidis and Blaze (1993).
- **ka9q**: Phil Karn’s proto-IPsec
- **IPsec**: Many years of design in the IETF
Why IPsec?

- SSL doesn’t protected against certain attacks
- Example: enemy sends forged packet with RST bit set; tears down connection
- Example: enemy sends bogus data for connection — SSL detects that, but can’t recover, since TCP has accepted the data
- Also — SSL can’t (easily) protect UDP
To protect an application that uses TLS, you have to change its code.

IPsec protects *all* traffic.

But — how does an application know if IPsec is present?

Can it request IPsec protection?
IPsec Structure

- Nested headers: IP; ESP or AH; maybe another IP; TCP or UDP; then data.
- Cryptographic protection can be host to host, host to firewall, or firewall to firewall.
- Option for user-granularity keying.
- Works with IPv4 and IPv6.
- Implements *Virtual Private Networks* (VPNs)
Some Packet Layouts

Transport Mode

- IP
- ESP
- TCP
- user data

Tunnel Mode

- IP
- ESP
- IP
- TCP
- user data
Tunnel and Transport Mode

- **Transport mode** protects end-to-end connections
- **Tunnel mode** — much more common — is used for VPNs and telecommuter-to-firewall
- The inner IP header can have site-local addresses
Implementation Choices

- “Bump in the stack” — host-resident
- In network hardware; explicitly controlled by the host
- “Bump in the wire” — external device in the network cable; not known to the host
- Gateway- or firewall-resident — not known to any hosts within the protected net
- Packets are always addressed to the decryptor
- No need for “snooping”
- May be further forwarded
Security Associations

- **SA: Security Association**
- Think of it as an IPsec connection
- All of the parameters needed for an IPsec session: crypto algorithms (AES, SHA1, etc.), modes of operation (CBC, HMAC, etc.), key lengths, digest lengths, traffic to be protected, etc.
- Both sides must agree on the SA for secure communications to work
Topologies

IPsec Encryption at Different Layers
Link Layer
IPsec History
Why IPsec?
Protects All Applications
IPsec Structure
Some Packet Layouts
Tunnel and Transport Mode
Implementation Choices
IPsec Addressing
Security Associations

Topologies
Paths
Uses for IPsec
Outbound Packet Processing
Inbound Packet Processing
Security Policy Database: Theory
Security Policy Database: Reality
Triangle Routing
End-to-End ESP vs. Firewalls
Paths

- **A1 to F1:**
  Encryptors $E_1, E_5$ (tunnel mode)

- **B2 to F1:**
  Encryptors $E_3, E_5$ (tunnel mode)

- **A2 to C:**
  Encryptors $E_2, E_4$ (transport mode)
Uses for IPsec

- Virtual Private Networks.
- “Phone home” for laptops, telecommuters.
- General Internet security?
Outbound Packet Processing

- Compare packet — src and dst addr, src and dst port numbers — against Security Policy Database (SPD)
- If packet should be protected, consult Security Association Database (SADB) to find SA
- Add appropriate IPsec header
Inbound Packet Processing

- If IPsec-protected, look up SA, authenticate, and decrypt
- Compare packet — src and dst addr, src and dst port numbers, as before — against SPD to see if it *should* have been protected, and by which SA
- If the protection characteristics match, accept the packet
- If they do not match, discard it
Security Policy Database: Theory

- IP address range or subnet: protect everything going to 128.59.0.0/16
- Port number list or range: 25,110,143
- Protect all addresses and/or all port numbers: full protection
- Multiple sets of the above
Most IPsec usage is for VPNs

Two options: send all traffic to the main site for relaying (triangle routing) or send Internet-bound traffic directly to the Internet

Tradeoff: performance and reliability versus protection and policy enforcement by the organizational firewall
For **Triangle Routing**, the SPD says “protect everything”. For **Direct Routing**, the SPD says “protect traffic destined for the organization”.
Suppose you have a firewall that allows some outgoing connections.

Further suppose that some internal host wishes to talk end-to-end (transport mode) ESP to the outside.

When the firewall sees the encrypted packet, it can’t tell if it’s a new connection (SYN bit set) or not.

It also can’t tell what port number it’s going to, or even if it’s transport mode or tunnel mode.
IPsec Details

- Authentication Header (AH)
- Truncating HMACs
- AH Layout
- What is an SPI?
- Other AH Fields
- Why a Sequence Number?
- Mutable Parts of the IP Header
- Encapsulating Security Payload (ESP)
- ESP Layout
- Padding
- Traffic Analysis of IP Packets
- Using ESP
- Nested IPsec

Issues
Authentication Header (AH)

- Based on keyed cryptographic hash function.
- Covers AH header, payload and immutable portion of preceding IP header.
- Not that useful today, compared to ESP with null encryption.
- Usually used with HMAC-SHA1 or HMAC-MD5.
- HMAC output is frequently truncated.
- Details: see RFC 4302.
Truncating HMACs

- It is not necessary to send the full HMAC
- Tradeoff between packet size (i.e., network performance) and probability of forgery
- 8 or 12 bytes is generally enough: forgery probability is $2^{-64}$ or $2^{-96}$
- Also — makes it harder to verify a possibly-recovered key
**AH Layout**

- **proto**
- **length**
- **reserved**

**SPI**

**Sequence Number**

**digest (variable length)**
What is an SPI?

- SPI — Security Parameter Index
- Identifies *Security Association*
- Each SA has its own keys, algorithms, policy rules
- On packet receipt, look up SA from \(\langle\text{SPI}, \text{dstaddr}\rangle\) pair
Other AH Fields

- “Proto” — what transport protocol header is next (i.e., TCP, UDP, etc.)
- “length” — length of AH header in 32-bit words, minus 2
- Actually, length is implicit in the security association; putting it in the header permits context-free (and unkeyed) examination of the packet
- “Sequence” — prevents replay attacks
Why a Sequence Number?

- Prevent packet replays
- Permitted by the IP model — but accidents are not the same as malice
- Many attacks possible if replays are permitted
Mutable Parts of the IP Header

- Some parts of the IP header change in transit
- Obvious: TTL (and hence IP checksum)
- Fragmentation? You generally reassemble fragments before doing AH processing
- DSCP (previously known as ToS)
- IP options — some change in flight (record route, source route); others do not. See RFC 4302 for details
Encapsulating Security Payload (ESP)

- Carries encrypted packet.
- An SPI is used, as with AH.
- Preferred use of ESP is for AES in CBC mode with HMAC-SHA1
ESP Layout

SPI

sequence number

data

data

padding

payload

digest

digest

digest

digest

Digest range

33 / 43
Padding

■ “padlen” says how many bytes of padding should be removed from the packet
■ Primary purpose: handle CBC blocksize issue
■ Secondary purpose: add random extra padding, to confuse *traffic analysts* (but it doesn’t do a very good job of that)
Traffic Analysis of IP Packets

- What can you learn from encrypted packets?
- Source address
- Destination address
- Length
- Time
- Hard to hide these things, even with crypto
Using ESP

- Can be used with null authentication or null encryption
- With null encryption, provides authentication only
- Easier to implement than AH
- Note: you should *virtually always* use authentication with ESP
- Similarly, sequence numbers should be used whenever possible
Nested IPsec

- In theory, can nest IPsec headers
- Outer layer: tunnel mode for VPN
- Inner layer: transport mode for host-to-host protection
- Rarely implemented
IPsec

IPsec Details

Issues

IPsec and Firewalls
IPsec and the DNS
Implementation
Issues
Requesting
Protection
Implementation
Status

Issues
IPsec and Firewalls

- Encryption is not authentication or authorization.
- Access controls may need to be applied to encrypted traffic, depending on the source.
- The source IP address is only authenticated if it is somehow bound to the certificate.
- Encrypted traffic can use a different firewall; however, co-ordination of policies may be needed.
IPsec often relies on the DNS.
- Users specify hostnames.
- IPsec operates at the IP layer, where IP addresses are used.
- An attacker could try to subvert the mapping.

We need to protect the DNS, via DNSSEC (later in the term)
- DNSSEC may not meet some organizational security standards.
- DNSSEC — which isn’t deployed yet, either — uses its own certificates, not X.509.
Implementation Issues

- How do applications request cryptographic protection? How do they verify its existence?
- How do administrators mandate cryptography between host or network pairs?
- We need to resolve authorization issues.
Some stacks permit applications to request IPsec protection

- Creates temporary SPD entry
- May cause key management negotiation or SA change (wait till next class)

But — what about bump-in-the-wire or gateway-resident IPsec implementations?

Would need marking in the packets, but no mechanism for that has ever been defined
Implementation Status

- IPsec is available for all major operating systems
- Not all of them support all of the many options
- Hard to use for specific application protection
- Nested IPsec rarely available