
1 / 40

Web and Email Security



Continuing Authentication

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

2 / 40



Continuing Authentication

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

3 / 40

■ Assume initial authentication is by password
■ How is continuing authentication done?
■ Two principal ways: cookies and hidden values
■ Both have their limits
■ Fundamental issue: both are sent by untrusted

clients



Untrusted Clients

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

4 / 40

■ The web site is interested in identifying users
■ (Some) users have incentive to cheat
■ The goal of the web site is to make cheating

impossible
■ But the web site doesn’t control the client

software or behavior



Repeat: Untrusted Clients

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

5 / 40

■ You can never trust the client
■ All input must be sanitized, scrutinized, etc.
■ Solutions: server-side storage or cryptographic

sealing



Server-Side Storage

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

6 / 40

■ Provide the client with an index to some
server-side file

■ Client sends back the nonce; server looks up
the identity (or other session details)

■ Caution: make certain that nonces are not
guessable or findable by exhaustive search.
Also make sure they’re not (easily) stealable
from other users

■ Problem: server-side storage can be exhausted;
sessions must be of finite duration



Cryptographic Sealing

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

7 / 40

■ After the user logs in (somehow), create a
string that contains the userid

■ Encrypt (optional) and MAC this string, using
keys known only to the server; pass the string
to the client

■ When the string is sent to the server, validate
the MAC and decrypt, to see who it is

■ Only the server knows those keys, so only the
server could have created those protected
strings (similar to Keberos TGT)

■ Optional: include (especially) timestamp, IP
address, etc.



Hidden Values

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

8 / 40

■ Protected userid string can be embedded in
the web page, and returned on clicks

■ Embed in URLs — but then they’re visible in
log files

■ Make them hidden variables passed back in
forms:

<INPUT TYPE=HIDDEN NAME=REQRENEW>

<INPUT TYPE=HIDDEN NAME=PID VALUE="2378">

<INPUT TYPE=HIDDEN NAME=SEQ VALUE="20060928002359">

<P><INPUT TYPE=SUBMIT VALUE="Renew Items"><INPUT

</FORM>



Cookies

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

9 / 40

■ More commonly used
■ Allow you to re-enter site
■ Are sometimes stored on user’s disks



Protecting Authentication Data

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

10 / 40

■ Continuing authentication data is frequently
transmitted unencrypted!

■ Most sites don’t want the overhead of SSL for
everything

■ Credentials are easily stolen, especially in
wireless hotpots (always use HTTPS with
gmail)

■ Usual defenses: lifetime; reauthenticate before
doing really sensitive stuff



Sidebar: Cookies and JavaScript

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

11 / 40

■ IE trusts local content more than it trusts
downloaded files

■ Content is “local” if it’s coming from a file on
the user’s disk

■ Each cookie is stored as a separate file
■ Suppose you put a script in a cookie, and then

referenced it by filename?
■ Now you know why browsers use random

characters in some of their filenames. . .
■ (Partially changed by Windows XP SP2)



Cross-Site Scripting (XSS)

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

12 / 40

■ Problem usually occurs when sites don’t
sanitize user input to strip HTML

■ Example: chat room (or MySpace or blog
sites) that let users enter comments

■ The “comments” can include JavaScript code
■ This JavaScript code can transmit the user’s

authentication cookies to some other site



Why It Works

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

13 / 40

■ A JavaScript program can only access data for
the current web site

■ But JavaScript from a site can access that
site’s cookies

■ Because of the XSS bug, the JavaScript from

that site contains malicious code
■ It can therefore steal cookies and send them to

some other site, via (say) an IMG URL



Sanitizing Input

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

14 / 40

■ Very hard to do properly
■ Whitelist instead of blacklist — accept <I>

instead of blocking <SCRIPT>

■ Watch for encoding: %3C
■ Watch for Unicode: &#x3C; or &#x003c; or

&#x00003c; or &#60; or . . .
■ Probably a way to write it in octal, too
■ Unicode is tricky — see RFC 3454. What do

all of your users’ browsers understand?



GET versus POST

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Repeat: Untrusted
Clients

Server-Side Storage

Cryptographic
Sealing

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

GET versus POST

Server-Side Security

Email Security

Threats

15 / 40

■ Web requests can use GET or POST commands
■ GET puts parameters in the URL; POST sends it

as data after the command
■ The nice thing about GET: you can reuse the

URL
■ But — URLs are logged, by servers and

sometimes proxies
■ Don’t put anything sensitive in the parameters!
■ POST can’t be reused, but doesn’t cause

sensitive data to be logged



Server-Side Security

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

16 / 40



Protecting the Server

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

17 / 40

■ Servers are very tempting targets
■ Defacement
■ Steal data (i.e., credit card numbers)
■ Distribute malware to unsuspecting clients



Standard Defenses

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

18 / 40

■ Check all inputs
■ Remember that nothing the client sends can

be trusted
■ Scrub your site



Server-Side Scripts

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

19 / 40

■ Most interesting web sites use server-side
scripts: CGI, ASP, PHP, server-side include,
etc.

■ Each such script is a separate network service
■ For a web site to be secure, all of its scripts

must be secure
■ What security context do scripts run in? The

web server’s? How does the server protect its
sensitive files against malfunctioing scripts?

■ This latter is a particular problem with server
plug-ins, such as PHP

■ Partial defense: use things like suexec



Injection Attacks

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

20 / 40

■ Often, user-supplied input is used to construct
a file name or SQL query

■ Bad guys can send bogus data
■ Example: a script that sends email collects a

username and executes
/usr/bin/sendmail username

■ The bad guy supplies foo; rm -rf / as the
username

■ The actual code executed is
/usr/bin/sendmail foo; rm -rf /

■ Oops. . .



Scrubbing Your Site

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

21 / 40

■ What is really being served?
■ Web servers often come with default scripts —

some of these are insecure
■ Example: nph-test-cgi that used to come

with Apache
■ Example: proprietary documents; Google for

them:

filetype:pdf "company confidential"

■ (By the way, many document have other,
hidden data)

■ Can Google for some other vulnerabilities, too



Users

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

22 / 40

■ If your site permits user web pages — this
deparment? — you have serious threats

■ Are the user CGI scripts secure?
■ Can users run PHP scripts in the browser’s

security context?
■ Are all of these secure?



ACLs

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

23 / 40

■ Web sites can block or permit certain IP
addresses:

Deny from 192.168.205
Deny from phishers.example.com
Deny from moreidiots.example
Deny from ke

■ Possible to allow just a few addresses, too:

Order deny,allow
Deny from all
Allow from dev.example.com

■ Caution: do not trust domain names



SSL and Proxies

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

ACLs

SSL and Proxies

Email Security

Threats

24 / 40

■ On proxied web connections, the proxy does
not see the full URL

■ It only sees the hostname and port:

CONNECT www.example.com:443 HTTP/1.1
User-Agent: Mozilla/5.0 ...
Proxy-Connection: keep-alive
Host: www.example.com

(SSL starts here)

■ But — the hostname (such as
www.reallynastystuff.com) is seen and logged

■ Performance note: SSL pages are not cached
■ SSL-only site can be 10–15× more expensive



Email Security

Continuing
Authentication

Server-Side Security

Email Security

The Usual Questions

Assets

Security at Rest

In Motion versus at
Rest

Components

Threats

25 / 40



The Usual Questions

Continuing
Authentication

Server-Side Security

Email Security

The Usual Questions

Assets

Security at Rest

In Motion versus at
Rest

Components

Threats

26 / 40

■ What are we trying to protect?
■ Against whom?



Assets

Continuing
Authentication

Server-Side Security

Email Security

The Usual Questions

Assets

Security at Rest

In Motion versus at
Rest

Components

Threats

27 / 40

■ Confidentiality — people often discuss
sensitive things via email

■ Authenticity — who really sent the email?
■ Anti-spam?
■ Phishing?
■ Authenticity has many motivations here



Security at Rest

Continuing
Authentication

Server-Side Security

Email Security

The Usual Questions

Assets

Security at Rest

In Motion versus at
Rest

Components

Threats

28 / 40

■ TLS protects data in motion — during
communication

■ For email, do we want that or do we want
security at rest — while the email is stored
somewhere

■ Other terminology: transmission security

versus object security

■ Usual answer: both
■ Security at rest is much harder



In Motion versus at Rest

Continuing
Authentication

Server-Side Security

Email Security

The Usual Questions

Assets

Security at Rest

In Motion versus at
Rest

Components

Threats

29 / 40

In Motion At Rest

Authentication keys are
transient

Authentication keys must
last as long as data must be
provably valid

Reject expired certificates Must store and accept old
ones them for later use

Negotiate algorithms Assume known algorithms
Decryption failures noticed
immediately

Decryption failures noticed
much later

Restart communications on
decryption failure

Decryption failure unknown
to sender



Components

Continuing
Authentication

Server-Side Security

Email Security

The Usual Questions

Assets

Security at Rest

In Motion versus at
Rest

Components

Threats

30 / 40

■ Mail User Agents (MUA): Outlook,
Thunderbird, webmail sites, etc.

■ Mail submission servers
■ Mail Transfer Agents (MTAs)
■ Mail Receivers
■ Mail storage and retrieval systems (IMAP,

POP, etc.)



Threats

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

31 / 40

http://xkcd.com/538/


Eavesdropping

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

32 / 40

■ Most obvious way to read email: eavesdropping
■ The bad guy “simply” listens to the network
■ Harder than it sounds, except for some wireless

nets
■ Frequently used by police and intelligence

agencies, i.e., the FBI’s Carnivore device

http://xkcd.com/538/


Password Theft

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

33 / 40

■ Most email is retrieved by login and password
■ Anyone who gets your password can read your

email
■ It’s much easier for an eavesdropper to pick

those up — passwords are usually sent each
time someone polls for new email

http://xkcd.com/538/


Hacking

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

34 / 40

■ The real threat to email is while it’s in storage
■ This can be temporary storage, waiting for you

to pick it up
■ It can also be your personal machine, for email

you’ve sent or received
■ What if your laptop is stolen? Does it have

plaintext copies of all the secure email you’ve
sent and received?

http://xkcd.com/538/


Screen Dumps

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

35 / 40

■ Connect via X11
■ Use some other Trojan horse software to dump

user’s screen periodically
■ Reflection off the back wall. . .

http://xkcd.com/538/


Subpoena Attacks

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

36 / 40

■ What if your records are subpoenaed?
■ This is a legal issue; technical wiggling won’t

help!
■ Even a search warrant is very disruptive

http://xkcd.com/538/


Rubber Hose Cryptanalysis

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

37 / 40

■ What if the local secret police want to know
what some intercepted email says?

■ Protecting human rights workers was one of
the original goals for PGP!

■ It’s public key-encrypted — you can’t read it
■ If the signature is encrypted, they can’t even

prove you sent it
■ Of course, people like that don’t care much

about proof, and they don’t like to take “no”
for an answer. . .

http://xkcd.com/538/


From http://xkcd.com/538/

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

38 / 40

http://xkcd.com/538/
http://xkcd.com/538/


Spoofing

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

39 / 40

■ Ordinary email is trivial to spoof
■ On timesharing machines and web mailers, the

systems can tack on the userid
■ On PCs, individuals set their own addresses
■ No security — if you need to authenticate

email, you have to use crypto

http://xkcd.com/538/


Systems Issues

Continuing
Authentication

Server-Side Security

Email Security

Threats

Eavesdropping

Password Theft

Hacking

Screen Dumps

Subpoena Attacks

Rubber Hose
Cryptanalysis

From
http://xkcd.com/538/

Spoofing

Systems Issues

40 / 40

■ Only read email on secure machines
■ Only connect to them securely
■ Watch out for buggy mailers and systems
■ But if the process of reading secure email is

too cumbersome, your email will be insecure,
because you’ll never use the secure version

■ Finding the right tradeoff is a difficult
engineering choice

http://xkcd.com/538/

	Continuing Authentication
	Continuing Authentication
	Untrusted Clients
	Repeat: Untrusted Clients
	Server-Side Storage
	Cryptographic Sealing
	Hidden Values
	Cookies
	Protecting Authentication Data
	Sidebar: Cookies and JavaScript
	Cross-Site Scripting (XSS)
	Why It Works
	Sanitizing Input
	GET versus POST

	Server-Side Security
	Protecting the Server
	Standard Defenses
	Server-Side Scripts
	Injection Attacks
	Scrubbing Your Site
	Users
	ACLs
	SSL and Proxies

	Email Security
	The Usual Questions
	Assets
	Security at Rest
	In Motion versus at Rest
	Components

	Threats
	Eavesdropping
	Password Theft
	Hacking
	Screen Dumps
	Subpoena Attacks
	Rubber Hose Cryptanalysis
	From ` `%%%`#_`__~~~
	Spoofing
	Systems Issues


