
SSL

SSL: Secure Socket Layer

Steven M. Bellovin February 12, 2009 1



SSL

Choices in Key Exchange

• We have two basic ways to do key exchange, public key (with PKI or
pki) or KDC

• Which is better?

• What are the properties of each?

Steven M. Bellovin February 12, 2009 2



SSL

PKI/pki

• Offline issuance of credentials (but are CAs really offline?)

• Computationally expensive

• CA server does not see private key; compromise of server can lead to
credential forgery, but does not expose past conversations

• Suitable for offline use

• However — revoking a credential requires either online operation or a
CRL, and CRLs do not provide real-time revocation

• Availability problem can mask revocation

Steven M. Bellovin February 12, 2009 3



SSL

KDC

• Online only

• Computationally cheap

• Compromise of server does expose past converations. (Look back at
the Needham-Schroeder protocol or at Kerberos and convince
yourselves of that. . . )

• Revocation is instant

• Availability an issue if KDC is unreachable

Steven M. Bellovin February 12, 2009 4



SSL

“It Depends”

• Do you need offline operation?

• Can you afford the CPU time, especially on the server side?

• What is the (perceived) risk of KDC compromise?

• How fast does revocation have to be?

Steven M. Bellovin February 12, 2009 5



SSL

Case Study: SSL

• Security for the web

• What should be protected?

• What should be deployed? What could be deployed?

• How?

• Caution: SSL is quite complex. I’m going to teach a subset of it —
and even it is complex.

Steven M. Bellovin February 12, 2009 6



SSL

Security for the Web

• Imagine 1995

• The web is new. Graphical interfaces — web browsers — are new,
and newly commercialized. (Netscape commercialized Mosaic, the
first graphical browser.)

• (Windows machines were rare online; Windows 95 was the first
version that included TCP/IP.)

• There was no e-commerce.

• One hold-up: security

• How could e-commerce be protected?

Steven M. Bellovin February 12, 2009 7



SSL

Choices

• Public key or symmetric crypto?

• Protect transmissions or protect transactions?

• To encryption transmissions, at what layer should it be done?

• Encrypt credit cards or avoid using them?

Steven M. Bellovin February 12, 2009 8



SSL

Encrypting Transactions

• Could encrypt just the sensitive portion of the purchase

• But — the expensive part is the key setup; symmetric encryption is
almost free

• Can we properly define “sensitive”?

• It would be nice if customers digitally signed their purchases — but no
consumers had key pairs or certificates then

Steven M. Bellovin February 12, 2009 9



SSL

Payment Scheme

• It would be nice if payment could be done without credit cards, say by
binding a certificate to a credit card

• But — no one had such certficates, and very few people would get
them

• Why should they? There was very little e-commerce, and most
people hadn’t (and haven’t) heard of the concept

• Netscape didn’t want to get into the banking business (and probably
couldn’t, for legal and practical reasons)

• Conclusion: only feasible choice is encrypted credit card numbers

Steven M. Bellovin February 12, 2009 10



SSL

Layers

• At what layer of the network stack should the crypto be done?

• Network layer — but then Netscape would have to touch many
different kernels

• Transport layer — same problem.

• (Note: by this time, there were already draft DoD and ISO standards
for encryption at these layers. The concept was known, but not
implemented.)

• HTML layer — useful only for HTML, and in 1995 it wasn’t clear that
that would be the winner

• Ultimate decision: provide protection immediately above the socket
layer

Steven M. Bellovin February 12, 2009 11



SSL

Encryption Above TCP

• TCP provides a reliable byte stream

• Can use stream cipher on top of it

• But — suppose the enemy forges a TCP packet

• The receiving TCP will accept it; the authentic version will be rejected
as a duplicate

• Or — the attacker can forge a TCP RST or FIN and tear down the
connection

• A MAC can detect forged data, but the sender and receiver are out of
synchronization

Steven M. Bellovin February 12, 2009 12



SSL

Encryption Below TCP

• Can discard forged packets before TCP processing

• Never seen by TCP; no ACK segment sent

• Ordinary TCP retransmission by the sender will repair the problem

• Some difficulty doing key exchange protocol at this layer

• Other than that, a good choice, but only available to OS vendors, not
Netscape

Steven M. Bellovin February 12, 2009 13



SSL

SSL: Secure Socket Layer

• General-purpose encryption and authentication package layered on
top of TCP

• Optimized for web use

• Version 1.0 was never released. Version 2.0 was used extensively,
but had cryptographic flaws

• Version 3.0 is in use today, and is believed to be secure

• The IETF version is TLS — Transport Layer Security — and is
actively being enhanced up to the present. Version 1.1 is in use
today; extensions to it and a new version, 1.2, are being deployed.

Steven M. Bellovin February 12, 2009 14



SSL

Design Principles

• Requested by special URL (https://. . . )

• Operates on a separate port number

• Designed for stateless web operation

• Servers are assumed to have certificates; clients may have them

• Negotiate session keys; also negotiate cryptographic algorithms to be
used

Steven M. Bellovin February 12, 2009 15



SSL

Session Start

• Client sends ClientHello message

• Identifies highest SSL version supported (TLS is called SSL 3.1)

• Random number for key generation

• Session ID

• List of supported cipher suites

• List of supported compression algorithms

• (Note: everything is encoded in ASN.1)

Steven M. Bellovin February 12, 2009 16



SSL

Compression?

• Cannot compress encrypted data

• (Why not?)

• Must compress first, then encrypt — when SSL was first deployed,
many people used dial-up modems that did compression, which
would be rendered useless by encryption

• In practice, no compression algorithms were ever defined. . .

Steven M. Bellovin February 12, 2009 17



SSL

SessionID

• Setting up a session is expensive because of the public key
operations

• Every web transaction can be a separate TCP connection — even
one for each embedded image

• Server may cache crypto parameters and resume session, with new
key negotiated cheaply

• If the server doesn’t want to resume the session, continue with new
session

Steven M. Bellovin February 12, 2009 18



SSL

Why Specify Cipher Suites?

• Handle different security/cost tradeoffs

• Handle newer ciphers

• Handle special situations, i.e., government-only ciphers

Steven M. Bellovin February 12, 2009 19



SSL

Server Hello

• Actual SSL version to be used

• Server random number

• Actual cipher suites and compression algorithms to be used

• Actual sessionID to be used; if the same as the client’s, this is a
resumed session

Steven M. Bellovin February 12, 2009 20



SSL

Server Certificate and Key Exchange Message

• Supplies the chain of certificates from this node up to (but rarely
including) the root certificate

• Client must have the root certificate already. (Why?)

• Server optionally sends its key exchange data; existence and type
are method-dependent.

Steven M. Bellovin February 12, 2009 21



SSL

Client Key Exchange

• Client supplies its key exchange data; again, this is
method-dependent

• The two key exchange messages are used to calculate the
pre-master secret

• The pre-master secret is used to derive all keying material

• Client may send its certificate, too, if it has one and if the server
requested it

Steven M. Bellovin February 12, 2009 22



SSL

Key Exchanges

• Many different types!

• Most common: value encrypted with RSA by client

• Other important choice: signed Diffie-Hellman exponential
(gx mod p)

→ Provides forward secrecy

Steven M. Bellovin February 12, 2009 23



SSL

Change Cipher Spec

• At this point, the client requests that encryption be activated via a
Change Cipher Spec message

• The server does the same thing

• All communications from this point on are encrypted and
authenticated

• They both then send Finished messages

Steven M. Bellovin February 12, 2009 24



SSL

The Finished Message

• Crucial — not a simple end-of-handshake message

• Each side sends a PRF of the master secret, a label (either “client
finished” or “server finished”) and a hash of all handshake messages

• (A PRF — pseudo-random function — is a keyed cryptographic
function. No more details in this class! SSL’s PRF is very complex.)

• Each side verifies the other side’s data

• Guard against downgrade attacks

Steven M. Bellovin February 12, 2009 25



SSL

Downgrade Attacks

Normal Negotiation

C → S: (list of ciphers)
S → C: Use Strong Cipher n

C → S: (strongly encrypted text)

Man in the Middle Attack

C → S: (list of strong ciphers)
[message intercepted and
dropped by attacker!]

X → S: (list of only weak ciphers)
S → C: Use Weak Cipher n

C → S: (weakly encrypted text)

The enemy tricks the server into using a broken algorithm. The same trick
can be used to force use of old, buggy versions of protocols, e.g., SSLv2.

Steven M. Bellovin February 12, 2009 26



SSL

(Why Does C Accept Weak Ciphers?)

• Is a weak cipher better than cleartext? Almost certainly.

• Some servers only support weak crypto. Which is more important,
talking to them with a weak cipher or not talking at all?

• It depends on the nature of the conversation — C has to decide.

• What does your browser do?

Steven M. Bellovin February 12, 2009 27



SSL

The Master Secret

• A PRF of the pre-master secret, the phrase “master secret”, and the
client and server random numbers

• Note: “type strings” are included in calculations to prevent using a
value from one computation as part of another

• Always 48 bytes long

Steven M. Bellovin February 12, 2009 28



SSL

Calculating Keys

• Calculate the PRF of the master secret, the phrase ”key expansion”,
and the two random values

• Call a KDF — Key Derivation Function

• Note: since both sides include random numbers, both sides affect —
but neither controls — the actual keys used.

• The PRF can generate arbitrary amounts of data; use it for the client
MAC key, the server MAC key, the client confidentiality key, and the
server confidentiality key

• The cipher suite AES 256 CBC SHA needs two 32-byte keys for
AES, two 20-byte keys for MACs, and two 16-byte IVs, totaling 136
bytes

Steven M. Bellovin February 12, 2009 29



SSL

Example: Client Hello (via ssldump)

6 1 0.0142 (0.0142) C>SV3.1(53) Handshake

ClientHello

Version 3.1

random[32]=

49 93 c7 2f ad f3 27 1f cf 0e b9 f9 b2 eb 62 e5

16 ff bc d9 ea 94 d2 7c bd 39 c8 b8 c7 75 b2 a3

cipher suites

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_RC4_128_SHA

compression methods

NULL

Steven M. Bellovin February 12, 2009 30



SSL

Server Hello

6 2 0.0145 (0.0002) S>CV3.1(74) Handshake

ServerHello

Version 3.1

random[32]=

49 93 c7 2f 04 8e 66 51 4d 94 3a f7 98 d9 7d ba

17 16 49 cf 46 86 46 d7 cf 1f eb 4f c3 e1 8f 25

session_id[32]=

ac 00 e0 ed ea c7 34 70 51 47 3e 6c f3 f8 f6 80

c8 26 96 3a 57 c6 ef a1 52 a5 8b 10 9a e6 0c 02

cipherSuite TLS_RSA_WITH_3DES_EDE_CBC_SHA

compressionMethod NULL

Steven M. Bellovin February 12, 2009 31



SSL

Key Exchange

6 3 0.0145 (0.0000) S>CV3.1(2390) Handshake

Certificate

6 4 0.0145 (0.0000) S>CV3.1(4) Handshake

ServerHelloDone

6 5 0.0375 (0.0229) C>SV3.1(262) Handshake

ClientKeyExchange

EncryptedPreMasterSecret[256]=

(much hex data...)

If Diffie-Hellman were used, both sides would send gx mod p

exponentials.

Steven M. Bellovin February 12, 2009 32



SSL

Start-Up

6 6 0.0375 (0.0000) C>SV3.1(1) ChangeCipherSpec

6 7 0.0375 (0.0000) C>SV3.1(40) Handshake

Finished

verify_data[12]=

90 56 e3 e1 ec 18 e3 63 9e 54 1c 99

6 8 0.0562 (0.0187) S>CV3.1(1) ChangeCipherSpec

6 9 0.0562 (0.0000) S>CV3.1(40) Handshake

Finished

verify_data[12]=

58 9c 4c f8 46 72 f9 e9 89 13 ab d8

Steven M. Bellovin February 12, 2009 33



SSL

Resuming A Session

• Uses just the two Hello, Change Cipher Spec, and Finished
messages

• New random numbers in the Hello messages; used to calculate new
keying material

• Cache contains the master secret

• Six messages, no big exponentiations: very efficient

• But — for long does a server cache session data? As long or as short
a time as it wants: tradeoff between memory and CPU consumption.
Also some modest incremental security risk.

• Note: no forward secrecy for cached sessions

Steven M. Bellovin February 12, 2009 34



SSL

The SSL Record Layer

• All of the SSL crypto messages are embedded in a record format

• Record header contains message type (handshake, Change Cipher
Spec, application data, Alert) and length

• Alert is for error messages, end-of-file, etc.

• Application data — such as HTTP messages — are encrypted and
MACed

• This is the purpose of it all!

Steven M. Bellovin February 12, 2009 35



SSL

MAC Failures

• If the MAC on a received message fails, must abort session

• May indicate an active attacker

• SSL is above TCP; as indicated before, no way to recover

Steven M. Bellovin February 12, 2009 36



SSL

Export Silliness

• The US government used to restrict export of strong crypto: RSA or
Diffie-Hellman moduli of > 512 bits, or symmetric ciphers with keys
> 40 bits

• Exportable browsers only used weak ciphers

• But — the NSA wasn’t interested in spying on e-commerce, so
legitimate merchants could get a special certificate that turned on
strong crypto in the exportable browser

• This meant that the strong crypto code was actually there — and it
was very easy to patch the binary to enable it all the time. . .

Steven M. Bellovin February 12, 2009 37



SSL

Conclusions

• Architecturally, SSL wasn’t the best choice; arguably, it was the worst

• Need to convert every application; vulnerable to injected TCP
segments

• No non-repudiation

• Credit card numbers in the clear on client and server

• But — it was the only possible choice

• Nothing else could have been deployed

• TLS has proven extraordinarily valuable for securing many other
types of traffic, such as email

• It is the encryption protocol of choice for securing TCP streams

Steven M. Bellovin February 12, 2009 38


