Cryptography

Key Management

e Where do keys come from?

e More precisely, we have to distinguish between long-lived keys and
session keys

e Need keys for secrecy and for MACs

e General solution: use long-lived key for authentication and to
negotiate session key

e (We saw a simpler form of this when discussing RSA)

e Many different ways to do this

CS@ Steven M. Bellovin __ February 8, 2009 __ 1
CuU

Cryptography

Desired Properties

e Alice and Bob want to end up with a shared session key K, with the
help of a key server S.

e They each want proof of the other’s identity
e They want to be sure the key is fresh

e A fresh key is one that hasn’'t been used before, i.e., is not a replay

CS@ Steven M. Bellovin __ February 8, 2009 ___ 2
CuU

Cryptography

Why Is Freshness Important?

e For stream ciphers, it’s crucial

e If too much traffic is encrypted with any key, it might help a
cryptanalyst (remember the CBC block count limit)

e If too much traffic is encrypted with any one key, it's a very tempting
target for a cryptanalyst

e An old key may have somehow been compromised

CS@ Steven M. Bellovin __ February 8, 2009 __ 3
CuU

Cryptography

Key Management for Symmetric Ciphers

e Simplest case: each pair of communicators has a shared key
e Doesn't scale — would require n? keys for n nodes
e Besides, cryptographically unwise — each key is used too much

e Need a Key Distribution Center (KDC)

CS@ Steven M. Bellovin __ February 8, 2009 ___ 4
CuU

Needham-Schroeder Protocol (1978)

A— S
S — A
A— B
B — A:
A— B:

A and B are names of parties that whish to talk; S is the KDC. N, are

Al B Na

{Nall Bll Kap [{KaB Il A}kpo}K g
{KaB || Atk g

{NB}K 5

{Ng— 1}k ,5

Cryptography

(1)
(2)
(3)
(4)
(5)

nonces — one-time values. Ky, is the session key for use between x and

Y.

CS¥
CU

Steven M. Bellovin __ February 8,2009 __ 5

Cryptography

Needham-Schroeder Protocol

Al B[Ny

A—S
S Keys: B —S
A— B
Npol|B|| Kap ||| Kap |l A
" Kap |l A :
N
Ak D B
Np—1

CS¥
CU

Steven M. Bellovin __ February 8, 2009 ___ 6

Cryptography

Explaining Needham-Schroeder

(1) Alice sends S her identity, plus a random nonce

(2) S’s response is encrypted in K 4 g, which guarantees its authenticity.
N 4 guarantees its freshness. It includes a new random session key
K 4 g, plus a sealed package for Bob. (Note: K 45 includes both
confidentiality and authentication keys.)

(3) Alice sends the sealed package to Bob. Bob knows it's authentic,
because it's encrypted with K gg which is known only to Bob and S

(4) Bob sends his own random nonce to Alice, encrypted with the
session key

(5) Alice proves that she could read the nonce

CS@ Steven M. Bellovin __ February 8, 2009 ___ 7
CuU

Cryptography

Cryptographic Protocol Design is Hard

e Bob never proved his identity to Alice

o If K 4p — the session key, which should be less sensitive — is ever
compromised, the attacker can impersonate Alice forever

e Denning and Sacco proposed a fix for this problem in 1981.
e INn 1994, Needham found a flaw in their fix.

e In 1995, a new flaw was found in the public key version of the original
Needham-Schroeder protocol — in modern notation, that protocol is
only 3 messages.

e Cryptographic protocol design is hard. ..

CS@ Steven M. Bellovin __ February 8, 2009 ___ 8
CuU

Cryptography

Other Cryptographic Protocols

e Cryptographic protocols allow us to do many strange things, such as
signing a message you can't see

e Too many to discuss in this class; here are a few small examples

CS@ Steven M. Bellovin __ February 8, 2009 __ 9
CuU

Cryptography

Coin Flips

e How do you flip a coin on the Internet, without a trusted third party?

e Alice picks a random number z, and sends H (x) to Bob, where H is
a cryptographic hash function.

e Bob guesses if z is even or odd, and sends his guess to Alice.

e If Bob’s guess is right, the result is heads; if he’s wrong, the result is
tails.

e Alice discloses . Both sides can verify the result. Alice can’t cheat,
because she can't find an 2’ such that H (z) = H(z).

e Note: this protocol is crucially dependent on the lack of correlation
between the parity of x and the values of H(x), or Bob can cheat.

CS@ Steven M. Bellovin __ February 8, 2009 __ 10
CuU

Cryptography

Kerberos

e Originally developed at MIT; now an essential part of Windows
authentication infrastructure.

e Designed to authenticate users to servers

e Users must use their password as their initial key — and must not be
forced to retype it constantly

e Based on Needham-Schroeder, with timestamps to limit key lifetime

CS&¥z Steven M. Bellovin __ February 8,2009 __ 11
CU

Cryptography

“Kerberos” in Greek Mythology

Kerberos ; also spelled Cerberus. n. The watch dog of Hades, whose
duty it was to guard the entrance—against whom or what does not clearly
appear; ...itis known to have had three heads. . .

—Ambrose Bierce, The Enlarged Devil’s Dictionary

CS@ Steven M. Bellovin __ February 8, 2009 __ 12
CuU

Cryptography

Design Goals

e Users only have passwords to authenticate themselves
e Users don’t want to type passwords for every interaction
e The network is completely insecure

e It's possible to protect the Kerberos server

e The workstations have not been tampered with (dubious!)

CS@ Steven M. Bellovin __ February 8, 2009 __ 13
CuU

Cryptography

Resources Protected

e Workstation login

e Network access to home directory
e Printer

e |IM system

e Remote login

e Anything else that requires authentication

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 14
CU

Cryptography

Principals

e A Kerberos entity is known as a principal
e Could be a user or a system service
e Principal names are triples: (primary name, instance, realm)

e Examples: username@some.domain.name,
somehost/Ipr@other.domain

e The realm identifies the Kerberos server

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 15
CU

Cryptography

How Kerberos Works

e Users present tickets — cryptographically sealed messages with
session keys and identities — to obtain a service.

e Use Needham-Schroeder (with password as Alice’s key) to get a
Ticket-Granting Ticket (TGT); this ticket (and the associated key) are
retained for future use during its lifetime.

e Use the TGT (and TGT'’s key) in a Needham-Schroeder dialog to
obtain keys for each actual service

CS@ Steven M. Bellovin __ February 8, 2009 ___ 16
CuU

Cryptography

Shared Secrets

e Everyone shares a secret with the Kerberos KDC

e For users, this is their password (actually, a key derived from the
password)

e The KDC is assumed to be secure and trustworthy; anything it says
can be believed

CS&¥z Steven M. Bellovin __ February 8,2009 __ 17
CU

Cryptography

Kerberos Data Flow

TGT Request (1)

User

Encrypted TGT (2)

Ticket Request, TGT, Auth (3)

!

Encrypted Ticket (4)

Ticket, Auth (5) | | Optional Server Response (6)

CS¥
CU

i

Service

""""" TGS

KDC

Steven M. Bellovin __ February 8, 2009 ___ 18

Cryptography

Getting a Ticket-Granting Ticket (TGT)

e The user sends its principal name to the Kerberos KDC

e The KDC responds with

{KC,tgs || {TC,tgs}thS}Kc

e Thatis, it contains a session key K. 45 and a TGT encrypted with a
key known only to the KDC

e The ticket contains
{tgs || ¢ || addr || imestamp || lifetime || Kc,s} k.

e It has the service name (tgs), the principal's name, its IP address, the
validity period, and the session key K. +4s sent to the client

e K. is the user’s password, known to the user and the KDC

CS@ Steven M. Bellovin __ February 8, 2009 __ 19
CuU

Cryptography

Who Knows What Now?

e The user and the KDC know K; the user use it to decrypt {Kc,th}Kc
and recover K. ¢gs

e Only the KDC knows K, therefore, anything encrypted with that
key could only have been created by the KDC

e The user will use K. 45 plus the ticket-granting ticket to obtain more
credentials

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 20
CU

Cryptography

Using the TGT

e The client uses the TGT to obtain tickets for other services

e To get a ticket for service s — say, email access — it sends s (email),
the ticket, and an authenticator to the KDC

e The KDC uses this information to construct a service ticket

CS@ Steven M. Bellovin __ February 8, 2009 __ 21
CuU

Cryptography

Authenticators

e Authenticators prove two things: that the client knows K. s, and that
the ticket is fresh

e An authenticator for a service s contains
{c || addr || timestamp} g, .

e That is, it contains the client name and IP address, plus the current
time, encrypted in the key associated with that ticket

e For a ticket-granting ticket, s is the tgs

CS&¥z Steven M. Bellovin __ February 8, 2009 ___ 22
CU

Cryptography

Processing the Ticket Request

e The KDC decrypts the ticket to recover K ¢4
e |t uses that to decrypt the authenticator

e It verifies the IP address and the timestamp (permissible clock skew
IS typically a few minutes)

e |f everything matches, it knows that the request came from the real
client, since only it would have access to the K. ¢4 that was in the
ticket

e It then sends a service ticket back to the client

CS&¥z Steven M. Bellovin __ February 8, 2009 ___ 23
CU

Cryptography

Service Tickets

e Service tickets are almost identical to ticket-granting tickets

e The differences is that they have the name of a different service —
say, “email” — rather than the ticket-granting service

e They're encrypted in a key shared by the KDC and the service

CS@ Steven M. Bellovin __ February 8, 2009 ___ 24
CuU

Cryptography

Using Service Tickets

e The client sends the service ticket and an authenticator to the serivce
e The service decrypts the ticket, using its own key

e The service knows it's genuine, because only the KDC knows the key
used to produce it

e The service verifies that the ticket is for it and not some other service
e It uses the enclosed key to decrypt and verify the authenticator

e The net result is that the service knows the client’s principal name,
extracted from the ticket

CS@ Steven M. Bellovin __ February 8, 2009 __ 25
CuU

Cryptography

Authentication, Not Authorization

e Kerberos is an authentication service
e It does not (usually) provide authorization

e The services know a genuine name for the client, vouched for by the
KDC

e They then make their own authorization decision based on this name

CS&¥z Steven M. Bellovin __ February 8, 2009 ___ 26
CU

Cryptography

Bidirectional Authentication

e Sometimes, the client wants to be sure of the server’s identity
e |t asks the server to prove that it, too, knows the session key

e The server replies with {timestamp + 1}, using the same
timestamp as was in the authenticator

CS@ Steven M. Bellovin __ February 8, 2009 __ 27
CuU

Cryptography

Ticket Lifetime

e TGTs typically last about 8—12 hours — the length of a login session
e Service tickets can be long- or short-lived, but don’t outlive the TGT
e Live tickets are cached by the client

e When service tickets expire, they’re automatically and transparently
renewed

CS&¥z Steven M. Bellovin __ February 8, 2009 ___ 28
CU

Cryptography

Inter-Realm Tickets

e A ticket from one realm can’t be used in another, since a KDC in one
realm doesn’t share secrets with services in another realm

e Realms can issue tickets to each other
e A client can ask its KDC for a TGT to another realm’s KDC

e The remote realm trusts the user’s KDC to vouch for the user’s
identity

e |t then issues serivce tickets with the original realm’s name for the
principal, not its own realm name

e As always, services use the principal name for authorization decisions

CS&¥z Steven M. Bellovin __ February 8, 2009 ___ 29
CU

Cryptography

Putting Authorization into Tickets

e Under certain circumstances, tickets can contain authorization
information known or supplied to the KDC

e Windows KDCs use this, to centralize authorization data

e (As a result, Windows and open source Kerberos KDCs don’t
iInteroperate well. . .)

e Users can supply some authorization data, too, to restrict what other
services do with proxy tickets

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 30
CU

Cryptography

Proxy Tickets

e Suppose a client wants to print a file
e The print spooler doesn’t want to copy the user’s file; that's expensive

e The user obtains a proxy ticket granting the print spooler access to its
files

e The print spooler uses that ticket to read the user’s file

CS@ Steven M. Bellovin __ February 8, 2009 __ 31
CuU

Cryptography

Restricting the Print Spooler

e The client doesn’'t want the spooler to have access to all of its files

e It lists the appropriate file names in the proxy ticket request; the KDC
puts that list of names into the proxy ticket

e When the print spooler presents the proxy ticket to a file server, it will
only be given those files

e Note: the file server must verify that the client has access to those
files!

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 32
CU

Cryptography

Kerberizing Applications

e Replace (or supplement) existing authentication mechanisms with
something that uses Kerberos

e Add authorization check

e If necessary (and it probably is, these days), change all network 1/O to
use the Kerberos session key to encrypt and authenticate all
messages

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 33
CU

Cryptography

Limitations of Kerberos

e Ticket cache security
e Password-guessing

e Subverted login command

CS@ Steven M. Bellovin __ February 8, 2009 __ 34
CuU

Cryptography

Ticket Cache Security

e Where are cached tickets stored?
e Oftenin/t np —is the OS protection good enough?

e Less of an issue on single-user workstations; often a threat on
multi-user machines

e Note: / t np needs to be a local disk, and not something mounted via
NFS...

CS@ Steven M. Bellovin __ February 8, 2009 __ 35
CuU

Cryptography

Password-Guessing

e Kerberos tickets have verifiable plaintext

e An attacker can run password-guessing programs on intercepted
ticket-granting tickets

e Kerberos uses passphrases instead of passwords

e Does this make guessing harder? No one knows

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 36
CU

Cryptography

It's Worse Than That

e On many Kerberos systems, anyone can ask the KDC for a TGT

e There’s no need to eavesdrop to get them — you can get all the TGTs
you want over the Internet!

e Solution: preauthentication
e The initial request includes a timestamp encrypted with K.

e It’s still verifiable plaintext, but collecting TGTs becomes harder again

CS@ Steven M. Bellovin __ February 8, 2009 __ 37
CuU

Cryptography

Subverting Login

e No great solutions!
e Keystroke loggers are a real threat today
e Some theoretical work on secure network booting

e Perhaps use the Trusted Computing mechanisms to protect
passphrase entry? Unclear if it will really help

CS&¥z Steven M. Bellovin __ February 8, 2009 __ 38
CU

