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Introduction to Cryptography, Part II
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Cryptography

Alice and Bob

• Alice wants to communicate securely with Bob

• (Cryptographers frequently speak of Alice and Bob instead of A and
B. . .

• What key should she use?
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Cryptography

Pre-Arranged Key Lists?

• What if you run out of keys?

• What if a key is stolen?

“Why is it necessary to destroy yesterday’s [key] . . . list if it’s
never going to be used again?”

“A used key, Your Honor, is the most critical key there is. If
anyone can gain access to that, they can read your
communications.”

(trial of Jerry Whitworth, a convicted spy.)

• What if Alice doesn’t know in advance that she’ll want to talk to Bob?
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Cryptography

How can Alice and Bob communicate?

Alice Bob

Eve

pk

msg

c = ENC(pk, msg)

(sk, pk)

msg = DEC(sk, c)

ENC algorithm should be non-determnistic and use randomness.
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Cryptography

The Solution: Public Key Cryptography

• Allows parties to communicate without prearrangement

• Separate keys for encryption and decryption

• Not possible to derive decryption key from encryption key

• Permissible to publish encryption key, so that anyone can send you
secret messages

• All known public key systems are very expensive to use, in CPU time
and bandwidth.

• Most public systems are based on mathematical problems.
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Cryptography

Chosen Ciphertext Security

1. A key k is chosen running GEN.

2. The adversary A can choose any text m and obtain ENC k(m). A
can also choose any ciphertext c and obtain DEC (c).

3. A chooses two messages m0 and m1.

4. A random b← {0,1} is chosen. The ciphertext c = ENC(mb) is
given to A.

5. In CCA1 security the adversary A can choose any text p and
obtain ENC k(m). In CCA2 security A can further choose any
ciphertext c′ 6= c and obtain DEC (c′).

6. A outputs a bit b′.

7. The output of the experiment is Privcca
A = 1 if b = b′ and

Privcca
A = 0 if b 6= b′.
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Cryptography

Public Key Encryption

(GEN, ENC, DEC)

• GEN(security parameter)→ (pk, sk).

• ENC(pk, msg, rand)→ c
Note: rand should be chosen randomly at each encryption

• DEC(sk, c)→ msg
Note: DEC has to be deterministic

Mariana Raykova 7



Cryptography

“Textbook RSA” and its Insecurity

• GEN(security parameter)→ pk = (N, e), sk = (N, d)

N = p · q where p and q are large primes;
e · d = 1 mod (p− 1)(q − 1)

• ENC (pk, m)→ c = me mod N

• DEC (sk, c)→m = cd mod N
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Cryptography

Attacks on “Textbook RSA”
• If e and msg have small such that msg < N

1
e , decryption is possible

without d.

• If we fix e = 3 and encrypt the same message under three different
keys (N1, e), (N2, e), (N3, e) we can recover the message from the
three ciphertexts.

• Common modulus attack: several keys pki = (N, ei) and ski =
(N, di).
– Each person having one key pair can read anything encrypted

with any of the public keys.

– If the same message is encrypted with two of these keys, an
adversary who sees the two ciphertexts and knows the
corresponding public keys can recover the message.

• Deterministic encryption, hence if we have a small range for message
values, we can try each possible message.
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Cryptography

Padded RSA

• GEN(security parameter)→ pk = (N, e), sk = (N, d)

• ENC(pk, m)→ c = (rand||m)e mod N where rand is a random
string of some fixed length l.

• DEC(sk, c)→ m̃ = cd mod N removing the higher l bits.

Various padding schemes: PKCS (Public Key Cryptography
Standard), OAEP (Optimal Asymmetric Encryption Padding),
SAEP(Simple-OAEP)
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Cryptography

A More Realistic Scenario

RSA operations are computationally expensive especially with long
messages. A way to limit the length of the encrypted message:

• Bob generates a random key k for a conventional cipher.

• Bob encrypts the message: c = {m}k.

• Bob pads k with a known amount of padding, to make it at least 512
bits long; call this k′.

• k′ is encrypted with Alice’s public key pk = (N, e).

• Bob transmits {c, ENC(pk, k′)} to Alice.

• Alice uses (N, d) to recover k′, removes the padding, and uses k to
decrypt ciphertext c.
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Cryptography

Key Exchange

• Alice and Bob do not know each other and want to communicate.

• They need to establish a key that:

– Nobody else knows.

– The key cannot be recovered if the secret of one of them that was
used in the key exchange protocol is revealed.
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Cryptography

Diffie-Hellman Key Exchange

p is a large prime (usually p = 2q + 1 where q is prime), g is a generator
for Zp

Alice Bob

a - big rand num

A = g
a
 mod p

b - big rand num

B = g
b
 mod p

A

B

K = B
a
 mod p K = A

b
 mod p

Discrete logarithm problem: given g and gx mod p, cannot compute x.
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Cryptography

Man-in-the-middle Attack

Alice Bob

a - big rand num

A = g
a
 mod p

b - big rand num

B = g
b
 mod p

A

B

K = EA
a
 mod p

K = EB
b
 mod p

Eve

ea - big rand num

EA = g
ea
 mod p

EA KA = A
ea
 mod p

eb - big rand num

EB = g
eb
 mod p

EB

KB = B
eb
 mod p

Authentication – encrypt with public key ga, gb, or K.
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Cryptography

Hardness Assumptions

• Factoring Hardness Assumption: Factoring a number of the form
N = p · q, where p and q are big prime numbers, is hard.

• RSA Hardness Assumption: Let (N, e) and (N, d) be RSA keys.
Given y ∈ Z∗N , it is hard to compute x such that xe = y mod N .

• Discrete Log Hardness Assumption: Given g, gx mod p, it is hard to
compute x.

• Decisional Diffie-Hellman (DDH) Hardness Assumption: It is hard to
distinguish tuples from type (g, gx, gy, gxy) and type (g, gx, gy, gz)
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Cryptography

Forward Security

• If the current encryption keys are compomised, past encryptions
cannot be compromised (read an old message, create a message
and claim that it was sent in the past).
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Cryptography

Homomorphic Vs. Non-malleable

• Homomorphic encryption (GEN, ENC, DEC) has the property that
ENC(x + y) = ENC(x) + ENC(y). (voting schemes)

• Non-malleable encryption (GEN, ENC, DEC): given any number of
encryptions ENC(yi) you cannot obtain an encryption of ENC(x)
where x 6= yi for all i. (bidding schemes)
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Cryptography

Who Sent a Message?

• When Bob receives a message from Alice, how does he know who
sent it?

• With traditional, symmetric ciphers, he may know that Alice has the
only other copy of the key; with public key, he doesn’t even know that

• Even if he knows, can he prove to a third party — say, a judge — that
Alice sent a particular message?
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Cryptography

Digital Signatures

(Gen, Sign, Vrfy)

• Gen(security parameter)→ (pk, sk).

• Sign(sk, msg)→ σ

• Vrfy(pk, msg, σ)→

{

1, if the signature is valid
0, otherwise

For every m it holds Vrfy(pk, m, Sign(sk, m)) = 1.
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Cryptography

Signature Unforgeability

The signature experiment Sig-forgeA:

• Run Gen to generate keys (pk, sk).

• The adversary A is given random oracle access to Sign – it submits a
message and gets back its signature. A chooses a message m that
has not been asked yet and outputs (m, σ).

• Sig-forgeA =

{

1, if Vrfy(pk, m, σ) = 1
0, otherwise

The signature scheme is existentially unforgeable if for all probabilistic
polynomial time adversaries: Pr[Sig-forgeA = 1] ≤ negl.
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Cryptography

“Textbook RSA” Signature Scheme

• Gen(security parameter)→ pk = (N, e), sk = (N, d)

• Sign(sk, m) = md mod N .

• Vrfy(pk, m, σ)→

{

1, if m = σe mod N
0, otherwise
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Cryptography

Attacks on “Textbook RSA” Signature Scheme

• Choose σ, compute m = σe and output the valid signature pair
(m, σ).

• If you have the valid signature pairs (m1, σ1) and (m2, σ2), you can
compute the signature of m1m2 as (m1m2)

d = md
1md

2 = σ1σ2,
hence (m1m2, σ1σ2).

Solution: Hash before exponentiation: Sign(sk, m) = (H(m))d mod N .
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Cryptography

They’re Not Like Real Signatures

• Real signatures are strongly bound to the person, and weakly bound
to the data

• Digital signatures are strongly bound to the data, and weakly bound
to the person — what if the key is stolen (or deliberately leaked)?

• A better term: digital signature algorithms provide non-repudiation
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Cryptography

Cryptographic Hash Functions

• Produce relatively-short, fixed-length output string from arbitrarily
long input.

• Computationally infeasible to find two different input strings that hash
to the same value

• Computationally infeasible to find any input string that hashes to a
given value

• Strength roughly equal to half the output length

• Best-known cryptographic hash functions: MD5 (128 bits), SHA-1
(160 bits), SHA-256/384/512 (256/384/512 bits)

• 128 bits and shorter are not very secure for general usage
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Cryptography

Hash Functions Security Properties

• Preimage resistance: given h, it is hard to find m such that
Hash(m) = h.

• Second preimage resistance: given m1, it is hard to find m2 such that
Hash(m1) = Hash(m2).

• Collision resistance: It is hard to find two messages m1 and m2 such
that Hash(m1) = Hash(m2).
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Cryptography

The Birthday Paradox

• How many people need to be in a room for the probability that two will
have the same birthday to be > .5?

• Naive answer: 183

• Correct answer: 23

• The question is not “who has the same birthday as Alice?”; it’s “who
has the same birthday as Alice or Bob or Carol or . . . ”, assuming that
none of them have the same birthday as any of the others
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Cryptography

Abusing a Weak Hash Function

• Alice prepares two contracts, m and m′, such that H(m) = H(m′)

• Contract m is favorable to Bob; contract m′ is favorable to Alice

☞ The exact terms aren’t important; Alice can prepare many different
contracts while searching for two suitable ones.

• Alice sends m to Bob; he signs it, producing {H(m)}KB
−1.

• Alice shows m′ and {H(m)}KB
−1 to the judge and asks that m′ be

enforced

• Note that the signature matches. . .
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Cryptography

Attacks on Existing Hash Functions

• MD5
– 1993, Den Boer and Bosselaers, ”pseudo-collision” of the MD5

compression function – two different IVs which produce an
identical digest

– 1996, Dobbertin, collision of the compression function of MD5

– 2004, Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu,
collisions for the full MD5

– 2005, Arjen Lenstra, Xiaoyun Wang, and Benne de Weger,
construction of two X.509 certificates with different public keys
and the same MD5 hash

– 2008, Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen
Lenstra, David Molnar, Dag Arne Osvik, Benne de Wege, creating
rogue CA certificates
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Cryptography

Attacks on Existing Hash Functions

• SHA-1

– 2005, Rijmen and Oswald, attack on a reduced version of SHA-1
on 53 out of 80 rounds

– 17 August 2005, Xiaoyun Wang, Andrew Yao and Frances Yao, an
improvement on the SHA-1 attack, lowering the complexity
required for finding a collision in SHA-1 to 263

– 2006, Christian Rechberger, attack with 235 compression function
evaluations

• SHA-3 ?, NIST competition for new hash function
http://csrc.nist.gov/groups/ST/hash/timeline.html
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Cryptography

Message Authentication Codes (MACs)

(Gen, Mac, Vrfy)

• Gen(security parameter)→ k; k must be kept secret

• Mac(k, m)→ t.

• Vrfy(k, m, t)→

{

1, if the tag is valid
0, otherwise

It holds that Vrfy(k, m, Mac(k, m)) = 1.
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Cryptography

HMAC

• Let H be a hash function.

• opad = 0x5c5c5c...5c5c

• ipad = 0x363636...3636

HMACK(m) = H((K ⊕ opad)||H((k ⊕ ipad)||m))

Note: Message is appended not prepended.
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Cryptography

Ellipctic Curve Cryptography (ECC)

• Elliptic curve

y2 = x3 + ax + b

• The solutions of an elliptic curve plus the point of infinity form a group
in which the discrete log problem is believed to be much harder.

• There are no algorithms (yet) that break ECC assumptions in less
than exponential time. This allows using shorter keys and better
performance.

• Many patent issues that limit the use of ECC. (Certicom)
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Cryptography

Zero Knowledge Proofs

How to prove that you know something without giving it away?

Example: Alice wants to prove to Bob that she knows the square root of
some big number u, i.e., she knows x such that x2 = u.
Proof: Run the following protocol n times:

Alice Bob

y -  rand num

b - rand num in {0, 1}

M = y
2
, 

N = u.y
2

b

if b = 1, c = x.y

if b = 0, c = y c

Bob checks

if b = 1, that N = c
2

if b = 0, that M = c
2

If check fails, abort
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Cryptography

Zero Knowledge Proofs

• If Alice can answer both type of changes, then she knows x such that
x2 = u since x = xy/y.

• If the protocol completes then Alice can be cheating with probability
at most 1

n.

Applications:

• Prove that you know a secret that you want to sell without actually
revealing it before the deal but convincing the potential buyer of your
knowledge.

• Prove that the encryptions that you send have a certain property, e.g.
lie on a polynomial of certain degree and uniquely reconstruct a
value, encrypt the same values, etc.
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