Introduction
Network security
Mostly not true — primary focus is security of networked applications
Some true network security — protect the network infrastructure
Topics

- Secure network protocol design
- Introduction to cryptography
- Using cryptography
- The role of correct software
The bad guys don’t follow the rules
To understand how to secure a system, you have to understand what sort of attacks are possible
Note that that is *not* the same as actually launching them...
Administrivia

Introduction

Administrivia

Course Structure
Prerequisites
Grading
Texts
Logistics
Talking to Me
TAs
Lectures
Homeworks
Programming Assignments
Homework 0
Co-operation versus Dishonesty
The Ethics of Security
Not How I Teach It!
Responsibility
Practical Focus
The CLIC Lab

Network Security

Course Outline
Lectures

Four or five homework assignments, generally with both programming and non-programming components

Midterm, final
Prerequisites

- COMS W4119 — Networking
 - Network layers
 - Basics of TCP/IP
 - Difference between IP, ICMP, TCP, and UDP
 - Port numbers and sequence numbers
 - Some understanding of the TCP flags
 - Basic principles of routing
 - (Generally ok as co-requisite)

- COMS W3137 or W3139
- Know how to use “make”, the compiler, etc.
- C or Java
Grading

Midterm 20%
Final 30%
Homeworks 50%

Exams will be open book.
Yes, I curve. The easiest way to get a very poor grade is to fail to turn in homeworks.
Texts

- Occasional papers
For grading issues, approach the TA within two weeks; if you don’t receive a satisfactory answer, contact me.

For issues relating to *this class*, email smb+4180@cs.

That lets me auto-sort class-related mail and keep better track of things

My office hours are posted; I try to note (too frequent) changes because of my travel schedule
Talking to Me

- Drop by, just to talk
- You don’t need to be in trouble to talk with me...
- If my office door is open, come on in
- But — I travel too much
TAs

- Mariana Raykova <mariana@cs...>
- Angelika Zavou <azavou@cs...>
- A third TA?
Lectures

- I prepare slides for each class, and upload them shortly before class time
- Well, occasionally they’re uploaded shortly after class...
- Because the class is being recorded for CVN, you’ll be able to watch any lectures you’ve missed for a limited time
- General access to the videos starts after the add/drop period ends
As noted, approximately five homework assignments

Homeworks are designed for practice, teaching, and evaluation

Homeworks must be submitted electronically by the start of class

Homeworks received later that day lose 5%, the next day 10%, two days late 20%, three days late 30%; after that, zero credit

Exceptions granted only for unforeseeable events. Workload, day job, etc., are quite foreseeable.
Programming Assignments

- All programming assignments must be done in C or Java
- Assignments will involve socket programming and use of cryptographic libraries — see HW0
- All inputs must be checked for validity and proper values and lengths — bugs are the major source of security problems
Homework 0

- Simple socket exercise
- Not collected, not graded, completely optional
- But — it will be a useful base for another assignment
- It’s also a refresher exercise for you on socket programming
Co-operation versus Dishonesty

- Discussing homework with others is encouraged.
- All programs and written material must be individual work unless otherwise instructed.
- Please use appropriate file permission mechanisms to protect your homework. (Looking at other people’s work is not allowed.)
- Zero tolerance for cheating or “outsourced homework”
- See the department’s academic honesty policy: http://www.cs.columbia.edu/education/honesty. You are responsible for following it.
The Ethics of Security

- Taking a computer security class is *not* an excuse for hacking
- “Hacking” is any form of unauthorized access, including exceeding authorized permissions
- The fact that a file or computer is not properly protected is no excuse for unauthorized access
- *If* the owner of a resource invites you to attack it, such use is authorized
- For more details, see http://www.columbia.edu/cu/policy/network_use.html
- Absolutely no Trojan horses, back doors, or other malicious code in homework assignments
- No, I’m not joking
Not How I Teach It!

Introduction

Administrivia

Course Structure

Prerequisites

Grading

Texts

Logistics

Talking to Me

TAs

Lectures

Homeworks

Programming

Assignments

Homework 0

Co-operation versus Dishonesty

The Ethics of Security

Not How I Teach It!

Responsibility

Practical Focus

The CLIC Lab

Network Security

Course Outline

Nukees

LET ME EXPLAIN: ON THE FIRST DAY OF OUR ADVANCED COMPUTER SECURITY CLASS, THE PROFESSOR SAID...

“WELCOME TO COMP SCI 261, STUDENTS. EACH OF YOU HAS AN "F" IN THIS COURSE. I HAVE ALREADY ENTERED YOUR GRADE INTO THE SCHOOL'S COMPUTERS, GOOD LUCK.

SO IN ORDER TO PASS THE COURSE...

EXACTLY.

STEP ASIDE, MICHAEL NEWBOW, I HAVE A NEW HERO!!

MIND YOU, THE OTHER PROFESSORS AREN'T AS FOND OF THE COURSE.

http://www.nukees.com

Copyright 2007 Darren Bleuel. All rights reserved.

(Used with permission; see http://www.nukees.com)
Responsibility

- You’re all adults
- You’re all responsible for your own actions
- If there’s something missing, you have to tell me
Practical Focus

- This is not a pure academic-style OS course
- You’ll be experimenting with real security holes
- A lot of (in)security is about doing the unexpected
- The ability to “think sideways” is a big advantage
The CLIC Lab

- All programs *must* run on the CLIC machines
- Programs that don’t compile *on those machines* receive zero credit
- You need a CS account to use CLIC; see https://www.cs.columbia.edu/~crf/accounts/
- Some of the CLIC machines are for in-person use; others can only be accessed remotely
- Reminder: no food or drink in the CLIC lab
Network Security
Goals

- Usual security trinity: confidentiality, integrity, availability
- Must ensure these in two domains: over-the-wire and on the host (for network-connected applications)
- Strategies are very different!
Dichotomy

- The host is (or can be) well-controlled
- There are well-developed authentication and authorization models
- There is a strong notion of “privileged” state, as well as what programs can use it
- None of that is true for the network
Anarchic Networks

■ More or less anyone can (and does) connect to the network
■ Connectivity can only be controlled in very small, well-regulated environments, and maybe not even then
■ Different operating systems have different — or no — notions of user IDs and privileges
■ As a consequence, notions of privilege are lacking
Bellovin’s Laws of Networking

1. Networks interconnect
2. Networks *always* interconnect
3. Interconnections happen at the edges, not the center
On top of all that, most network failures are benign.

You have to program allowing for such failures: data corruption, timeouts, dead hosts, routing problems, etc.

Rule of thumb: anything that can happen by accident can happen by malice — only more so.
A host can trust *nothing* that comes over the wire.

Any desired protections have to be supplied explicitly.

Perhaps there’s a middleware layer supplying the protection — but such middleware is based on the same principles.
Unproductive Attitudes

- “Why would anyone ever do that?”
- “That attack is too complicated”
- “No one knows how this system works, so they can’t attack it”
Better Attitudes

- “Programming Satan’s Computer” (Ross Anderson)
- “Assume that serial number 1 of any device is delivered to the enemy
- “You hand your packets to the enemy to deliver; you receive all incoming packets from the enemy
Network Security Tools

- Cryptography
- Network-based access control (firewalls and more)
- Monitoring
- Paranoid design
Protocol Design

- Watch out for design errors
- Leave room for crypto and authentication
- Make sure all sensitive fields are protectable
- Make authentication bilateral
- Figure out the proper authorization
- Defend against eavesdropping, modification, deletion, replay, and combinations thereof
Most network security holes are due to buggy code

A buggy network-connected program is an insecure one

Correct coding counts for a lot
Course Outline
Introduction

- Attacks and threats
- Cryptography overview
- Network authentication and key management
- Kerberos
- SSL
Applications

- Web security
- Email security and phishing
- Network storage
- Secure shell
Lower Layers

- IPsec
- Firewalls
- Wireless
- Protocol design
Information

- Intrusion Detection
- Network scans
- Privacy
Availability

- Worms
- Denial of service
- Network infrastructure
 - Routing
 - DNS