
Sometimes the Bad Guys Win

• What do you do if a machine is compromised?

• How do you assess the damage?

• How do you recover?

• What else should you do?

Steven M. Bellovin April 26, 2007 1



How Can Machines be Compromised?

• 0-day attacks?

• Carelessness?

• Insider attacks?

• In some sense, it doesn’t matter; you still have to recover

Steven M. Bellovin April 26, 2007 2



Damage Assessment — Why?

• What has to be thrown out?

• What can be saved?

• How did the bad guys get in?

Steven M. Bellovin April 26, 2007 3



A General Rule

• It is frequently impossible to cleanse an infected system

• Hiding back doors is relatively easy

• The usual advice: reformat your disks and reinstall

Steven M. Bellovin April 26, 2007 4



Hidden Back Doors

• Cron jobs

• Standard services — with a twist

• Programs buried in someone’s .profile

• Jobs started via at or batch

• Trojan horses in commands likely to be executed by root

• More ways? Of course

Steven M. Bellovin April 26, 2007 5



Backups Are Your Friend

• Back up your system frequently

• Make sure you have a 0-day backup, from before the system went live

• Recover your data — but not your programs — from the backups

Steven M. Bellovin April 26, 2007 6



(Is That Enough?)

• Suppose there’s some non-sensitive application with a buffer overflow

• It reads one of your “secure” data files

• The attacker puts the buffer overflow into the data file, triggering a
new penetration when the data files are restored after reinstalling the
code

• Oops. . .

Steven M. Bellovin April 26, 2007 7



Restore and Compare

• If you have good backups, you could restore to another machine and
compare files

• Very time-consuming

• Besides, some files change

Steven M. Bellovin April 26, 2007 8



Tripwire

• Create a cryptographic checksum of each file

• To detect changes, recalculate the checksums and compare against
the stored copy

• Easier said than done. . .

Steven M. Bellovin April 26, 2007 9



Changes

• Can you trust your master list of checksums?

• Can you trust the software that’s calculating the new checksums?

• An attack: detect when Tripwire is running and give a different answer

Steven M. Bellovin April 26, 2007 10



A Real Example

• A (Linux) loadable kernel module intercepted file system operations

• If pid 1 tried to open /sbin/init, it got the Trojan horse version

• If any other process did the open, it got the real version

• Tripwire wouldn’t detect the substitution!

Steven M. Bellovin April 26, 2007 11



Safely Using Tripwire

• Store the checksum file on (physically safe) media

• Use another machine to read the disk you’re checking

• Don’t trust any software on the (possibly) compromised machine

Steven M. Bellovin April 26, 2007 12



Dual-Ported Disk

Steven M. Bellovin April 26, 2007 13



Analyzing a Hacked System

• Suppose you want to analyze a compromised system

• What if the bad guy tried to hide?

• How do you proceed?

Steven M. Bellovin April 26, 2007 14



Work with a Copy

• Never try to work with a live disk

• You don’t want to destroy metadata

• Be careful of the malware!

• Make a copy — preferably an image copy; failing that, use
dump/restore

• Don’t use anything that will change file access times

Steven M. Bellovin April 26, 2007 15



Live CDs

• If you don’t have a spare machine (with compatible hardware), trying
booting a “live” CD

• A live CD is a a bootable, runnable syste

• Example: Knoppix; Ubuntu installer

Steven M. Bellovin April 26, 2007 16



Mounting the Image

• Always mount it read-only, with the “noexec” and “nodev” options

• Most newer systems allow you to mount a file as a block device (vnd
on BSD; lofiadm on Solaris; loopback device on Linux, etc.)

Steven M. Bellovin April 26, 2007 17



Things to Look For

• What files were changed recently?

• Note: look at ctime, not just mtime (why?)

• Or run Tripwire against either the 0-day Tripwire dump or a
known-good installation disk

Steven M. Bellovin April 26, 2007 18



Funky Filenames

• Files and directories can be hidden by using strange file names

• Examples: “...” (3 dots), “bin ” (trailing blank), /usr/lbb (instead of
/usr/lib), C:\WINDOWS\system32\Com\Inf\[4 BLANK
SPACES].exe

• Names resembling real filenames:
C:\WINDOWS\Windows Explorer.exe

Steven M. Bellovin April 26, 2007 19



Finding Deleted Files

• Deleting a file doesn’t delete the data

• Instead, it changes some metadata — the filename on FAT
filesystems; the i-node number and i-list entry on traditional BSD
filesystems

• The blocks are returned to the freelist — but they may not be
reallocated immediately

• Clever tools can recover deleted files

Steven M. Bellovin April 26, 2007 20



Digression: Serious Threats

• Even overwriting a block doesn’t delete physical traces of the data

• There are (classified?) techniques to recover data

• At a minimum, disks need to be overwritten three times — and
sometimes, you just destroy the disk thoroughly

Steven M. Bellovin April 26, 2007 21



Rebuilding Deleted Files

• Suppose there are no clues in directories or the i-list

• Sometimes, it’s possible to do magic with the freelist

• Files aren’t random. . .

Steven M. Bellovin April 26, 2007 22



File Types

• Different file types have different byte distributions

• Example: C has lots of { and }; text has distinctive capitalization
patterns, etc.

• Sort blocks by (probable) type

Steven M. Bellovin April 26, 2007 23



Contact Probabilities

• Look for matches between the end of one block and the start of the
next

• Look for syntactically correct statements

• Log files have timestamps!

Steven M. Bellovin April 26, 2007 24



Are Deleted Files Better for Forensics?

• A normal file can be overwritten easily

• A deleted file can’t be touched

• Block allocation policies are invisible to the application

• Some claim that deleted files are more likely to be intact

Steven M. Bellovin April 26, 2007 25



Looking at Memory

• If the system is still up, dump main memory (/dev/kmem)

• Can often find plaintext of the malware

• Encrypting file systems write ciphertext to disk — but where’s the
plaintext? Often, in RAM

Steven M. Bellovin April 26, 2007 26



Digression: Doing Crypto

• Always zero out plaintext as soon as possible

• That’s even more true for keys

• Especially do this before program exit, when pages are handed back
to the OS

• Also, lock the pages into memory, to make sure there’s no copy in a
swap file

Steven M. Bellovin April 26, 2007 27



Criminal Prosecution

• Suppose you want to prosecute the bad guys

• Should you do these forensics?

• No!

Steven M. Bellovin April 26, 2007 28



Evidence Procedures

• Evidence must be handled very carefully

• Must avoid defense charges of tampering, forgery, misinterpretation
(to say nothing of legal issues such as proper warrants)

• Parties with more interest in a case can be portrayed as biased

Steven M. Bellovin April 26, 2007 29



Techniques

• Chain of custody

• Rigorous marking, labeling, logging, etc.

• Careful records of all analysis

• Not a job for amateurs

Steven M. Bellovin April 26, 2007 30



Conclusions

• A lot can be learned from compromised systems

• A really thorough analysis is difficult, and probably more
time-consuming than reinstallation

• For special situations, get expert help

Steven M. Bellovin April 26, 2007 31



The Final

Steven M. Bellovin April 26, 2007 32



The Final

• Open book

• Open notes

• No computers

• Cumulative

• 170 minutes (but I’m aiming for 120)

Steven M. Bellovin April 26, 2007 33


