
Handling Long-Term Keys

• Where do cryptographic keys come from?

• How should they be handled?

• What are the risks?

• As always, there are tradeoffs

Steven M. Bellovin March 6, 2007 1



Public/Private Keys

• Who generates the private key for a certificate?

• The server may have better random number generators

• Only the client needs the key

• (Does the corporation need a copy of the key?)

• If the server generates the key, how does it get to the client securely?

• (How does the public key get to the CA securely?)

Steven M. Bellovin March 6, 2007 2



Secret Keys

• Who generates secret keys?

• The problem is harder — both parties need to know them

• Again, how are they communicated securely?

Steven M. Bellovin March 6, 2007 3



Communication Options

• Channel authenticated by other means

• Public-key protected channel

• Hard-wired contact

• Out-of-band communications

• Note: process matters!

Steven M. Bellovin March 6, 2007 4



Out-of-Band Communications

• Telephone

• SMS text message

• Postal mail

Steven M. Bellovin March 6, 2007 5



What are the Enemy’s Powers?

• Steal letters from a mailbox?

• Fake CallerID with an Asterisk PBX?

• Burglary, bribery, blackmail?

Steven M. Bellovin March 6, 2007 6



Tamper Resistance

• Keys are safer in tamper-resistant containers — they can’t be stolen

• See “the three Bs” above

• Note well: tamper-resistant, not tamper-proof

• The availability of tamper-resistant hardware changes the tradeoffs

Steven M. Bellovin March 6, 2007 7



Online vs. Offline

• Does the key generator need to be online?

• A CA can be offline, and accept public keys via, say, CD

• That may be riskier than having it generate the private key — what if
there’s a buffer overflow in the read routine?

• For secret keys, the server can’t be offline; rather, some copy of the
key has to be online, to use it

Steven M. Bellovin March 6, 2007 8



Putting it All Together

• Let’s look at some relatively simple privileged programs

• How do they combine the different mechanisms we’ve seen?

• What are the threats? The defenses?

Steven M. Bellovin March 6, 2007 9



The “Passwd” Command

• Permits users to change their own passwords

• In other words, controls system access

• Very security-sensitive!

• How does it work?

Steven M. Bellovin March 6, 2007 10



Necessary Files

• /etc/passwd — must be world-readable, for historical reasons
☞ Maps numeric UID to/from username

• Historical format:

root:8.KxUJ8mGHCwq:0:0:Root:/root:/bin/sh

• Fields: username, hashed password, numeric uid, numeric gid,
name, home directory, shell

• Numeric uid/gid is what is stored for files

• Password is two bytes of salt, 11 bytes of encryption output

• Encoded in base 64 format: A-Za-z0-9./

Steven M. Bellovin March 6, 2007 11



Storing the Hashed Password

• Better not make it world-readable

• Store in a shadow password file

• That file can be read-protected

Steven M. Bellovin March 6, 2007 12



File Permissions

$ ls -l /etc/passwd /etc/shadow

-rw-r--r-- 1 root root 671 Oct 3 10:42 /etc/passwd

-r-------- 1 root root 312 Oct 3 10:42 /etc/shadow

Steven M. Bellovin March 6, 2007 13



Must Be Owned by Root!

• Ownership of that file is equivalent to root permissions

• Anyone who can rewrite it can give themselves root permissions

• Cannot use lesser permissions

• Note: adding a line to that file (often with a text editor) is the first step
in adding a user login to the system

Steven M. Bellovin March 6, 2007 14



Implications of the Numeric UID/GUID

• Assigning a UID to a username grants access to that UID’s files

• In other words, anyone with write permission on /etc/passwd has
access to all files on the systm

• Consequence: even if we changed the kernel so that root didn’t have
direct access to all files, this mechanism provides indirect access to
all files

• Conclusion: Cannot give root control over UID assignment on secure
systems

Steven M. Bellovin March 6, 2007 15



What Else Shouldn’t Root Be Able to Change?

• The user’s password!

• Attack: change the user’s password to something you know

• Windows XP does not give Administrator either of these powers

Steven M. Bellovin March 6, 2007 16



The Passwd Command

• Clearly, must be setUID to root

• Must be carefully written. . .

Steven M. Bellovin March 6, 2007 17



Authenticating the User

• Passwd program has real UID

• Demand old password — why?

☞ Guard against someone doing permanent damage with minimal
access

• Root can change other user’s passwords

Steven M. Bellovin March 6, 2007 18



Where Does the Salt Come From?

• Passwd command generates random number

• Need this be true-random?

• No — “probably different” will suffice.

• Seed ordinary pseudo-random number generator with time and PID

Steven M. Bellovin March 6, 2007 19



Restricting Access

• Suppose only a few people were allowed to change their own
passwords

• Take away other-execute permission; put those people in the same
group as “passwd”

Steven M. Bellovin March 6, 2007 20



Front Ends

• What about the help desk, for forgotten passwords?

• Have a setUID root front end that invokes passwd

• Validate: make sure they can only change certain users’ passwords

• Log it! (Much more later in the semester on logging)

Steven M. Bellovin March 6, 2007 21



Making a Temporary Copy

• Must copy password file to temporary location and back to change a
password

• Watch out for race condition attacks!

• Actual solution: put temporary file in /etc instead of /tmp; avoid
whole problem

• Secondary benefit: use temporary file as lock file, and as recovery
location in case of crash

Steven M. Bellovin March 6, 2007 22



Update in Place

• Password changes could overwrite the file in place

• Doesn’t work for use add/delete or name change

• Still need locking

Steven M. Bellovin March 6, 2007 23



Passwords on the Command Line?

• Bad idea — ps shows it

• Bad idea — may be in shell history file

$ history 12

12 date

13 man setuid

14 ls -l ‘tty‘

• Your terminal isn’t readable by others:

$ ls -l ‘tty‘

crw--w---- 1 smb tty 136, 5 Oct 26 14:24 /dev/pts/5

Steven M. Bellovin March 6, 2007 24



Changing Your Name

• Chsh is like passwd, but it lets you change other fields

• Ordinary users can change shell and human-readable name; root can
change other fields

• Much more dangerous than passwd

Steven M. Bellovin March 6, 2007 25



Input Filtering

• What if user supplies new shell or name with embedded colons?
Embedded newlines? Both?

• Could create fake entries!

• Must filter for such things

Steven M. Bellovin March 6, 2007 26



Features Used

• Access control

• Locking/race prevention

• Authentication

• Privilege (setUID)

• Filtering

Steven M. Bellovin March 6, 2007 27



The Recent CS Problem

• The CS department has recently had some security problems

• Some of the issues are related to this topic

Steven M. Bellovin March 6, 2007 28



A Combination of Holes

• Password compromise

• An apparently-innocuous kernel bug

• Insufficient filtering

Steven M. Bellovin March 6, 2007 29



Password Compromise

• A student’s password was compromised

• How? Guessed? Used elsewhere? Keystroke logger?

• It doesn’t matter — it was a reusable password

Steven M. Bellovin March 6, 2007 30



Common Password File

• The CS department uses a common password file for all of the
CRF-administered machines

• Login access to one machine gives login access to all

• Classic tradeoff between convenience and security

Steven M. Bellovin March 6, 2007 31



(Is it Really a Tradeoff?)

• We all need to log in to many different CS machines

• Suppose the passwords were different?

• Could we all remember — or securely store — that many different
passwords?

Steven M. Bellovin March 6, 2007 32



Networked Password File

• We use a system called NIS (from Sun) to make the password file
available to all CRF machines

• This means that any machine on the CS network can see it:

ypcat passwd

• You don’t even need that command:

python -c ’import nis; print nis.cat("passwd")’

• The shadow password file doesn’t help!

Steven M. Bellovin March 6, 2007 33



It Can’t be Locked Up

• There’s no authentication over the net

• We could restrict its use to a few machines only, and then only from
“privileged” ports, i.e., to root

• But that would mean that ypcat and all the other commands that use
it legitimately would have to be setUID — is that safe?

• We cannot secure this resource without a significant change in a lot
of different pieces. . .

Steven M. Bellovin March 6, 2007 34



More Password Compromises

• Subsequently, several more accounts were compromised, all
belonging to users in a single lab

• Were machines in that lab compromised?

• Not clear

Steven M. Bellovin March 6, 2007 35



The Kernel Bug

• In some versions of Linux, there is a kernel bug that permits core
dumps to show up in any directory

• That includes directories not writable by the user

• It was originally seen as a denial of service attack — use up disk
space

Steven M. Bellovin March 6, 2007 36



The Exploit. . .

• Create a specially-crafted string

• chdir() to cron’s directory

• Dump core

• Wait for the cron daemon to find and interpret the dump

Steven M. Bellovin March 6, 2007 37



Cron

• Executes scripts according to time of day

• Can have user-specified crontabs (installed via the setUID crontab

command) and a system crontab

• User-specified crontabs are in /var/spool/cron

• System crontabs are in /etc/cron.d; these contain a userid field
as well as a time specification and command line

• Is a core dump a valid cron table? Yes. . .

Steven M. Bellovin March 6, 2007 38



Tricking Cron

• cron reads and parses a line at a time

• If any line is bad, it is ignored, with an error message

• But cron keeps reading!

• As long as the string that looks like a crontab line is in the core file, it
will be found and will be executed

Steven M. Bellovin March 6, 2007 39



The Root Causes

• Bugs happen — even kernel bugs

• Crontab accepts garbage in a system file

• More precisely, it accepts system files that contain garbage and
useful data

• Should there even be a system crontab? With user crontabs, the
crontab command can parse things do do error-checking ahead of
time

Steven M. Bellovin March 6, 2007 40


