“I'm paranoid, but am |
paranoid enough?”

CS@ Steven M. Bellovin __ February 20, 2007 ___ 1
CuU

Special Techniques for Secure Programs

e Buffer overflows are bad in any case
e Some problems are only a risk for secure programs
e But what is a “secure program”?

e A secure program is one that runs with one set of permissions and
accepts input from somone with lesser permissions

e Includes most network servers and setUID programs, and many
system daemons

CS@ Steven M. Bellovin __ February 20, 2007 ___ 2
CuU

SetUID Programs Are More Sensitive

e Anyone on the local machine can invoke them
e Many environmental influences that can be controlled by the invoker

e On the other hand, network daemons can be accessed remotely

CS@ Steven M. Bellovin __ February 20, 2007 __ 3
CuU

Macro Injection Attacks

e Suppose a program is querying an SQL database based on valid
userID and query string:

sprintf(buf, "select where user=\"\%\" &&
query=\"%\"", unane, query);

e Whatif query is
foo" || user="root

e The actual command passed to SQL is

sel ect where user="unanme" && query = "foo" ||
user ="root"

e This will retrieve records it shouldn’t have

e Stored SQL procedures are much safer

CS@ Steven M. Bellovin __ February 20, 2007 ___ 4
CuU

What Was Wrong with That Slide?

CS@ Steven M. Bellovin __ February 20, 2007 __ 5
CuU

Did You Notice?

e | wrote sprintf instead of snpri ntf
e | was mostly trying to save room on a complex slide

e | was also curious to see who'd notice. ..

CS@ Steven M. Bellovin __ February 20, 2007 __ 6
CuU

More Generally

e If you invoke an external program, be aware of its parsing rules

e Especially serious for languages like Shell, Perl, and Python, where
data can be converted to statements and executed

e Example: what delimits different arguments to the shell?

e Blank, tab, newline? Why?

CS@ Steven M. Bellovin __ February 20, 2007 ___ 7
CuU

IFS

e The shell variable IFS lists the delimiters used when parsing
command lines

e If you can change it, you can control the shell’s parsing

e (The exact effects are subtle, because of the risks of just accepting it
blindly — know your semantics!)

CS@ Steven M. Bellovin __ February 20, 2007 __ 8
CuU

Other Sensitive Environment Variables

e PATH Search path for finding commands

— If “.” is first,, you'll execute a command in the current directory.
What if it's booby-trapped?

— Secure programs should always use absolute paths or reset PATH
e ENV With some shells, a file to execute on startup
e LD LIBRARY _PATH The search path for shared libraries
e LD PRELOAD Extra modules loaded at runtime

Some of these are disabled for setUID programs, to minimize the risks

CS@ Steven M. Bellovin __ February 20, 2007 __ 9
CuU

File Descriptors

e Normally, file descriptor O is stdin, 1 is stdout, and 2 is stderr

e The open() system call allocates the first available file descriptor,
starting from O

e Suppose you close fd 1, then invoke a setUID program that will open
some sensitive file for output

e Anything it prints to stdout will overwrite that file

e Similar tricks for fd O

CS@ Steven M. Bellovin __ February 20, 2007 ___ 10
CU

Some Other Inherited Attributes

current directory

root directory see chr oot ()

resource limits seegetrlimt()

umask

timers seegetitimer()

signal mask

open files See the FIOCLEX optionto i oct |
Current uid

Effective uid

CS&¥z Steven M. Bellovin __ February 20,2007 __ 11
Cu

Why Do These Matter?

e Will such a program misbehave?

e Will it core dump after having read a sensitive file? (Some systems
prevent core dumps of setUID programs.)

e If the program terminates prematurely, will it leave some crucial
resource locked?

CS@ Steven M. Bellovin __ February 20, 2007 ___ 12
CU

Access Control

e Some privileged programs need to read or write user-specified files
e Example: web server (remote), Ipr (setUID)

e \ery tricky. ..

CS@ Steven M. Bellovin __ February 20, 2007 ___ 13
CU

Remote Access Control

e Don’t want to offer all system files to, say, web users
e Operating system doens’t help — too many files are world-readable
e Web server must implement its own access control

e Several different levels

CS&¥z Steven M. Bellovin __ February 20, 2007 ___ 14
CU

Filename Parsing

e User supplies pathname; application must check for validity

e Administrator specifies list of accessible files and/or directories
e Sometimes, wildcards — *, ?, and more — are permitted

e Application must parse supplied filename

e Remarkably difficult

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 15
Cu

The *. ."” Problem

e Attackers try to get at other files

e Simplest attack: put . . in the path

e http://exanple.com ../../../../etc/passwd

e The .. can occur later:

e http://exanple.comal/b/../../../../etc/passwd

e If directory / dir islegal, whatabout/dir/../dir/file? Do you
want to count levels?

e Watchoutfor/dir///../../file—replicated/’s counts as a
single one

CS@ Steven M. Bellovin __ February 20, 2007 ___ 16
CU

Application Syntax Issues

e Applications can have their own weird syntax

e Example: in URLS, %xx can specify two hex digits for the character.
%2F is the same as /

e When is that expanded?

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 17
Cu

Unicode

e Standard for representing (virtually) all of the world’s scripts
[1 There are proposals for Klingon and Tengwar (“Elvish”) codepoints

e Many problems!

e Some symbols look the same, but have different values: ordinary / —
technically called “solidus” — is U+002F, but U+2044, “fraction
slash”, looks the same

e “Combining characters” and “grapheme joiners” make life even more
complicated. Thus, a can be U+00C1 or the two-character sequence
U+0041,U+0301

e Comparison rules have to be application-dependent — and watch out
for false visual equivalences; these have already been used for
attacks, especially with Cyrillic domain names

CS@ Steven M. Bellovin __ February 20, 2007 ___ 18
CU

Operating Systems Don’t Have Such Problems

e Conceptually, you're trying to permit certain subtrees.
e The application is trying to map a string into a subtree
e The OS has one mapping function; the application has another

e The OS doesn’t care about the tree structure for access control; it
uses its own mechanisms

e The OS stores permissions with the data; no separate parse is
needed

CS@ Steven M. Bellovin __ February 20, 2007 ___ 19
CU

File Access by SetUID Programs

e Some commands — | pr, for example — need to write to restricted
places, but also read users’ files

e Need permissions to write to spool directory; need user permissions
to read users’ files

e How can this be done?

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 20
Cu

First Attempt: Access() System Call

i f (access(file, ROK) == 0) {
fd = open(file, O RDONLY);
ret = read(fd, buf,s sizeof buf);

}

el se {
perror(file);
return -1;

}

What's wrong?

CS@ Steven M. Bellovin __ February 20, 2007 ___ 21
CuU

Several Problems

e Only useful if setUID root — other UIDs can’t open read-protected files.
e (I didn’t check the return code on the open() call...)
e Race conditions

e Generic name: TOCTTOU (Time of Check to Time of Use)

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 22
Cu

Race Conditions

e There is a window between the access() call and the open() call

e The attack program can create a link to a readable file, invoke | pr in
the background, then remove the link and replace it with a link to a
protected file

e The probability of success is low but not zero — and the attacker only
has to win once

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 23
Cu

Temporary Files

e The same attack can happen onfilesin/t np
e The standard C library subroutine nkt enp() is vulnerable to this

e Alternatives: nkst enp() or nkt enp() with the O CREAT | OEXCL
flags to open()

e Caution: if open() is used that way, generate a new template if
EEXIST is returned

CS@ Steven M. Bellovin __ February 20, 2007 __ 24
CuU

Shedding SetUID

e A setUID program can give up and then regain its setUID status:
save uid = geteuid();
setuid(getuid());
fd = open(file, O RDONLY);
set eui d(save_ui d);

e Better alternative: run unprivileged most of the time, but assume
setUID status only when doing privileged operations

[] But — watch for SIGINT, buffer overflows; injected code can
reassume privileges, too

CS@ Steven M. Bellovin __ February 20, 2007 ___ 25
CU

Lock Directories

e Have a parent directory that's mode 700, and a 777 subdirectory
e While privileged, do a chdi r () to the subdirectory

e Give up privileges; write files in this subdirectory

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 26
Cu

Use a Subprocess

e Fork, and have a subprocess open the user’s files

e Option 1: copy the file contents to the parent process over a pipe —
safe but slow

e Option 2: send the file descriptor via sendnsg() /recvinsg() over a
Unix-domain socket

CS@ Steven M. Bellovin __ February 20, 2007 ___ 27
CU

Issues with Message-Passing Systems

e File-opening permissions
e Authentication

e Other issues?

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 28
CU

Opening Files

e How does the server open a private file? Two ways. ..
e The client opens the file and passes the open file descriptor

e The client sends some sort of access right — a capability — to the
server

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 29
Cu

Authentication

e Who is allowed to send messages to the server?
e How does the server know the client’s identity?

e Two solutions: support from the OS or cryptographic authentication

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 30
Cu

Other Issues?

e The buggy code problem doesn’t go away

e It's very similar to the network security problem; it hasn’t been solved,
either

CS@ Steven M. Bellovin __ February 20, 2007 ___ 31
CU

The Fundamental Problem

e The real issue: interaction
e To be secure, a program must minimize interactions with the outside

e All interactions must be controlled

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 32
Cu

RASQ

e RASQ: Relative Attack Surface Quotient
e Microsoft metric of how vulnerable an application is
e Roughly speaking, it measures how many input channels it has

e Must reduce RASQ

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 33
Cu

Not All Channels Are Equal

e Some channels are easier to exploit
e Some are more accessible to attackers

e Some have a bad track record

CS@ Steven M. Bellovin __ February 20, 2007 ___ 34
CuU

RASQ Examples

e Weak ACLs on shared files: .9 — names are generally known; easy
to attack remotely

e Weak ACLs on local files: .2 — only useful to attacker after initial
compromise

e Open sockets: 1.0 — potential target

CS@ Steven M. Bellovin __ February 20, 2007 ___ 35
CU

Generic Defenses

e Better OS

e What's a secure OS? One that makes it easy to write secure
programs

e Most don’t qualify. ..

CS&¥z Steven M. Bellovin __ February 20, 2007 __ 36
Cu

Minimize Chances for Mistakes

e Eliminate unnecessary interactions
e Example: per-process or per-user/t np
e Avoid error-prone primitives

e Tight specification of input and environment — and check that it’s all
true

CS@ Steven M. Bellovin __ February 20, 2007 ___ 37
CU

