
File Systems

■ One of the most visible pieces of the OS
■ Contributes significantly to usability (or the lack thereof)

1 / 29

Design Choices 2 / 29

Files and File Systems

■ What’s a file?
■ You all know what a file is. . .
■ What’s a file system?
■ A file system is a mapping of file names to a subset of a physical medium

2 / 29

1



Many Types of File Systems

■ Unix file systems
■ Windows file systems
■ CDs
■ DVDs
■ DECtapes — ancient variant of magnetic tape that permitted seeking and

overwriting individual blocks in the middle
■ They all had variants

3 / 29

Design Decisions

■ File names
■ Hierarchical or non-hierarchical
■ Types of access control
■ Special media characteristics
■ Available space
■ Media speed
■ Read-only or read-write
■ Versioning
■ Fault recovery
■ Record-, byte-, or block-structured
■ Many more

4 / 29

2



File Names

■ Case sensitivity
■ Extensions — permitted, required, uninterpreted, length
■ Character set
■ Uniform or non-uniform file-naming scheme

5 / 29

Types of Names

■ /this/is/a/unix.file.name
■ q:\Windows likes\mOnOcaSE
■ >Multics>uses<for>up-a-level
■ os.360.looks.hierarchical.but.isnot(really)
■ vms-host::device[direct.ory.list]name.type;1

6 / 29

3



Other Disks

■ How are other disk drives named?
■ On Unix, they’re a subtree of the file system, via the mount command
■ Multics had a single tree, but directories always lived on permanently-mounted

disks
■ On Windows and VMS, a drive letter is explicitly given
■ On OS/360 and /370, you could use explicit disk identifiers or you could use

the “system catalog” — a hierarchical structure for file names where the
“directories” didn’t need to live on the same disks as the files

7 / 29

Extensions

■ On Unix and Multics, the kernel knows nothing of filename extensions; they’re
just characters. But some applications (make, the C compiler, etc., care)

■ The old DOS filesystem used “8.3” format: 8-character filenames, with
optional 3-character extension

■ OS/360 confused extensions with directory levels

8 / 29

4



Media Characteristics

■ Today’s disks have fixed-size, 512-byte sectors
■ Old mainframe disks had variable-size sectors, selected by the application
■ CDs, even if writable, aren’t block-writable the way disks are
■ Blocks on flash disks can only be written a certain number of times before

they wear out
■ WORM disk blocks can be written and deleted, but not overwritten

9 / 29

Space and Speed

■ How big can the file system be? How small must it be?
■ Is space really tight? Can you trade space for speed?
■ How large can files be? What is a typical size?

10 / 29

5



Versioning

■ Some file systems (VMS, Tenex, TOPS-20) include a version number as part
of the file name

■ Plan 9 provides file system views at any arbitrary point in time

11 / 29

File Structures

■ Old systems: files were sequences of records, intially images of punch cards or
printer lines

■ Unix: randomly-addressable sequences of bytes
■ Page-oriented file systems: sequence of page-sized blocks

12 / 29

6



How Many Names?

■ Can files have more than one name?
■ What about directories?
■ Are all names equal?
■ How do you keep the file system graph acyclic? Or is it just a tree?

13 / 29

Underlying Hardware 14 / 29

Underlying Disk Hardware

■ As noted, today’s disks use fixed-size blocks; some older disks did not
■ IBM disks supported hardware search keys — you could seek to a track, then

look for that key somewhere on the track
■ Goal was good hardware support for databases — offload the CPU, by having

the disks do more work

14 / 29

7



Supporting Such Disks

■ Space allocation has to support track granularity
■ Underlying I/O primitives have to support that mode of access
■ If we mix block-structured files and search key files on the same disk, do we

have to support tracks with both kinds of blocks?

15 / 29

Speed and Optimization

■ Does the speed of the disk affect the file system design?
■ What do we really know about the hardware?
■ Old disks were based on cylinders, heads, and sectors; newer disks lie to the OS
■ How do keep a file localized? Do we need to?

16 / 29

8



Interace to Lower Layers

■ What is the interface to lower layers?
■ Unix assumes “read/write block N”
■ Multics has none; it’s just the paging system
■ OS/360 permitted very general I/O requests

17 / 29

Space Allocation 18 / 29

Space Allocation

■ What is our unit of space allocation?
■ Does the programmer have to reserve space in advance?
■ How much does the OS have to know about the application’s data formats?

18 / 29

9



Units of Space Allocation

■ Some systems required space to be allocated in hardware-based units: tracks,
cylinders, etc.

■ With variable sector sizes, how you packed the data determined how much you
could fit onto a track and hence onto a disk

■ If you packed more records into a single block, there were fewer blocks and
hence fewer interblock gaps on each track

19 / 29

Keeping Track

■ The OS has to keep track of all allocated space: which files own which parts
of the disk

■ What data structure is best?
■ Also need to keep track of free space on the disk
■ Space allocation is similar to RAM allocation
■ Space allocated to a file may or may not need to be contiguous, depending on

other design decisions

20 / 29

10



Metadata 21 / 29

Metadata

■ We need to store a lot of data about the file
■ Most obvious: disk blocks
■ Other data: file creator, dates created/modified/accessed
■ File permissions

21 / 29

Other Metadata

■ Read-only flag, independent of other file permissions
■ “Hidden”
■ System file
■ Archive needed (similar to “page modified” flag)
■ ASCII/Binary
■ Record size

22 / 29

11



File Types

■ Some operating systems consider some files to be special in some way
■ On Unix, most I/O devices have filenames
■ Directories are sometimes just files
■ Some communications channels have filenames

23 / 29

Linux Metadata

struct stat {
dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */

off_t st_size; /* total size, in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last status change */

};

24 / 29

12



Where is Metadata Stored?

■ In the file?
■ In the directory entry?
■ Elsewhere?
■ Split?

25 / 29

Crash Recovery 26 / 29

Crash Recovery

■ Must ensure that file systems are in a consistent state after a system crash
■ Example: don’t write out directory entry before the metadata
■ Example: File systems are generally trees, not graphs; make sure things always

point somewhere sane
■ What if the file has blocks but the freelist hasn’t been updated?
■ Principle: order writes to ensure that the disk is always in a safe state

26 / 29

13



Repairing Damage

■ At boot-time, run a consistency checker except after a clean shutdown
■ Example: fsck (Unix) and scandisk (Windows)
■ Force things to a safe state; move any referenced blocks to a recovery area

27 / 29

Log-Structured File Systems

■ Instead of overwriting data, append the changes to a journaling area
■ The file system is thus always consistent, as long as writes are properly ordered.
■ Hmm — is that a reasonable assumption?

28 / 29

14



Modern Disks

■ Modern disks do a lot of buffering
■ Cache size on new Seagate drives: 2-16M bytes
■ The drive will reorder writes to optimize seek times
■ If a bad block has been relocated, you can’t even predict when seeks will

occur; only the drive knows
■ What if the power fails when data is buffered?

29 / 29

15


	File Systems
	Design Choices
	Files and File Systems
	Many Types of File Systems
	Design Decisions
	File Names
	Types of Names
	Other Disks
	Extensions
	Media Characteristics
	Space and Speed
	Versioning
	File Structures
	How Many Names?

	Underlying Hardware
	Underlying Disk Hardware
	Supporting Such Disks
	Speed and Optimization
	Interace to Lower Layers

	Space Allocation
	Space Allocation
	Units of Space Allocation
	Keeping Track

	Metadata
	Metadata
	Other Metadata
	File Types
	Linux Metadata
	Where is Metadata Stored?

	Crash Recovery
	Crash Recovery
	Repairing Damage
	Log-Structured File Systems
	Modern Disks


