
File Systems

■ One of the most visible pieces of the OS
■ Contributes significantly to usability (or the lack thereof)
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Files and File Systems

■ What’s a file?
■ You all know what a file is. . .
■ What’s a file system?
■ A file system is a mapping of file names to a subset of a physical medium
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Many Types of File Systems

■ Unix file systems
■ Windows file systems
■ CDs
■ DVDs
■ DECtapes — ancient variant of magnetic tape that permitted seeking and

overwriting individual blocks in the middle
■ They all had variants
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Design Decisions

■ File names
■ Hierarchical or non-hierarchical
■ Types of access control
■ Special media characteristics
■ Available space
■ Media speed
■ Read-only or read-write
■ Versioning
■ Fault recovery
■ Record-, byte-, or block-structured
■ Many more
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File Names

■ Case sensitivity
■ Extensions — permitted, required, uninterpreted, length
■ Character set
■ Uniform or non-uniform file-naming scheme
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Types of Names

■ /this/is/a/unix.file.name
■ q:\Windows likes\mOnOcaSE
■ >Multics>uses<for>up-a-level
■ os.360.looks.hierarchical.but.isnot(really)
■ vms-host::device[direct.ory.list]name.type;1
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Other Disks

■ How are other disk drives named?
■ On Unix, they’re a subtree of the file system, via the mount command
■ Multics had a single tree, but directories always lived on permanently-mounted

disks
■ On Windows and VMS, a drive letter is explicitly given
■ On OS/360 and /370, you could use explicit disk identifiers or you could use

the “system catalog” — a hierarchical structure for file names where the
“directories” didn’t need to live on the same disks as the files
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Extensions

■ On Unix and Multics, the kernel knows nothing of filename extensions; they’re
just characters. But some applications (make, the C compiler, etc., care)

■ The old DOS filesystem used “8.3” format: 8-character filenames, with
optional 3-character extension

■ OS/360 confused extensions with directory levels
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Media Characteristics

■ Today’s disks have fixed-size, 512-byte sectors
■ Old mainframe disks had variable-size sectors, selected by the application
■ CDs, even if writable, aren’t block-writable the way disks are
■ Blocks on flash disks can only be written a certain number of times before

they wear out
■ WORM disk blocks can be written and deleted, but not overwritten
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Space and Speed

■ How big can the file system be? How small must it be?
■ Is space really tight? Can you trade space for speed?
■ How large can files be? What is a typical size?
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Versioning

■ Some file systems (VMS, Tenex, TOPS-20) include a version number as part
of the file name

■ Plan 9 provides file system views at any arbitrary point in time
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File Structures

■ Old systems: files were sequences of records, intially images of punch cards or
printer lines

■ Unix: randomly-addressable sequences of bytes
■ Page-oriented file systems: sequence of page-sized blocks
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How Many Names?

■ Can files have more than one name?
■ What about directories?
■ Are all names equal?
■ How do you keep the file system graph acyclic? Or is it just a tree?
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Underlying Disk Hardware

■ As noted, today’s disks use fixed-size blocks; some older disks did not
■ IBM disks supported hardware search keys — you could seek to a track, then

look for that key somewhere on the track
■ Goal was good hardware support for databases — offload the CPU, by having

the disks do more work
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Supporting Such Disks

■ Space allocation has to support track granularity
■ Underlying I/O primitives have to support that mode of access
■ If we mix block-structured files and search key files on the same disk, do we

have to support tracks with both kinds of blocks?
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Speed and Optimization

■ Does the speed of the disk affect the file system design?
■ What do we really know about the hardware?
■ Old disks were based on cylinders, heads, and sectors; newer disks lie to the OS
■ How do keep a file localized? Do we need to?
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Interace to Lower Layers

■ What is the interface to lower layers?
■ Unix assumes “read/write block N”
■ Multics has none; it’s just the paging system
■ OS/360 permitted very general I/O requests
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Space Allocation

■ What is our unit of space allocation?
■ Does the programmer have to reserve space in advance?
■ How much does the OS have to know about the application’s data formats?
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Units of Space Allocation

■ Some systems required space to be allocated in hardware-based units: tracks,
cylinders, etc.

■ With variable sector sizes, how you packed the data determined how much you
could fit onto a track and hence onto a disk

■ If you packed more records into a single block, there were fewer blocks and
hence fewer interblock gaps on each track
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Keeping Track

■ The OS has to keep track of all allocated space: which files own which parts
of the disk

■ What data structure is best?
■ Also need to keep track of free space on the disk
■ Space allocation is similar to RAM allocation
■ Space allocated to a file may or may not need to be contiguous, depending on

other design decisions
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Metadata

■ We need to store a lot of data about the file
■ Most obvious: disk blocks
■ Other data: file creator, dates created/modified/accessed
■ File permissions
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Other Metadata

■ Read-only flag, independent of other file permissions
■ “Hidden”
■ System file
■ Archive needed (similar to “page modified” flag)
■ ASCII/Binary
■ Record size
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File Types

■ Some operating systems consider some files to be special in some way
■ On Unix, most I/O devices have filenames
■ Directories are sometimes just files
■ Some communications channels have filenames
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Linux Metadata

struct stat {
dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */

off_t st_size; /* total size, in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last status change */

};
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Where is Metadata Stored?

■ In the file?
■ In the directory entry?
■ Elsewhere?
■ Split?
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Crash Recovery 26 / 29

Crash Recovery

■ Must ensure that file systems are in a consistent state after a system crash
■ Example: don’t write out directory entry before the metadata
■ Example: File systems are generally trees, not graphs; make sure things always

point somewhere sane
■ What if the file has blocks but the freelist hasn’t been updated?
■ Principle: order writes to ensure that the disk is always in a safe state
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Repairing Damage

■ At boot-time, run a consistency checker except after a clean shutdown
■ Example: fsck (Unix) and scandisk (Windows)
■ Force things to a safe state; move any referenced blocks to a recovery area
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Log-Structured File Systems

■ Instead of overwriting data, append the changes to a journaling area
■ The file system is thus always consistent, as long as writes are properly ordered.
■ Hmm — is that a reasonable assumption?

28 / 29

14



Modern Disks

■ Modern disks do a lot of buffering
■ Cache size on new Seagate drives: 2-16M bytes
■ The drive will reorder writes to optimize seek times
■ If a bad block has been relocated, you can’t even predict when seeks will

occur; only the drive knows
■ What if the power fails when data is buffered?
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