
Linux Memory Allocation 1 / 33

Page Descriptor

■ One for each page of memory
■ Quite large — at least 28 bytes plus a list head

■ Many flags — locked, dirty, accessed, active/inactive, being reclaimed, and
more

■ Reference counter — how many page tables is this page part of?

2 / 33

Non-Uniform Memory Access

■ For some CPU types, some forms of memory are more expensive to access
than others

■ Memory organized into nodes

■ Not needed for Pentiums, but complicates the rest of memory architecture

3 / 33

1



Memory Zones

■ Not all memory is equally addressable
■ Different types of memory have to be used for different things
■ Linux uses different zones to handle this
■ ZONE DMA: Some older I/O devices can only address memory up to 16M
■ ZONE NORMAL: Regular memory up to 896M
■ ZONE HIGHMEM: Memory above 896M

4 / 33

High Memory

■ On Pentiums, the Linux kernel can’t address memory over 1G. Why not?
■ Not enough address space available, given Linux’s addressing strategy —

where the kernel is, where the user programs start, etc.
■ Memory up to 896M is addressed directly
■ Virtual addresses between 896M and 1G are constantly changed, to address

physical memory at higher addresses
■ On 64-bit machines, this isn’t an issue; all memory is directly addressable

5 / 33

2



Slab Allocator

■ There are certain kinds of data structures that are frequently allocated and
freed

■ Instead of constantly asking the kernel memory allocator for such pieces,
they’re allocated in groups and freed to per-type linked lists

■ To allocate such an object, check the linked list; only if it’s empty is the
generic memory allocator called

■ To free such an item, just put it back on the list
■ If a set of free objects constitute an entire page, it can be reclaimed if

necessary

6 / 33

Linux Page Frame Reclaiming Algorithm 7 / 33

Principles

■ Linux does not predetermine how memory is used
■ All pages can be used for all purposes
■ Well, most. . .
■ Memory will be consumed until there’s none left
■ The Linux Page Frame Reclaiming Algorithm (PFRA) has to make sure that

there is some free

8 / 33

3



Types of Pages

Type Description Action
Unreclaimable Locked pages, kernel mode

stacks, free pages, etc.
Impossible

Swappable Anonymous user-mode pages Write to swap
area

Syncable Parts of files; mapped user mode
pages

Write to file if
necessary

Discardable Unused pages Do nothing

9 / 33

Mapped versus Anonymous Pages

■ A mapped page is part of a file
■ It corresponds to a given block in the file system
■ Very often, such pages are read-only and hence can’t be dirty
■ An anonymous page does not correspond to any file — it may be part of a

program’s data area or stack — and has to be written to the swap area

10 / 33

4



Reclamation Principles

■ First reclaim pages not associated with any process (no page table changes
needed)

■ Virtually all user-mode pages are reclaimable
■ For shared pages, clear all page table entries simultaneously
■ Only reclaim “unused” pages, i.e., those that haven’t been referenced recently

11 / 33

When to Reclaim Memory

■ Low on memory
■ Hibernation (part of laptop power management — out of scope)
■ Periodically — make sure that memory will be available whenever it’s needed

12 / 33

5



The LRU Lists

■ Two linked lists of pages for each process: the active list and the inactive list

■ Clearly, we reclaim pages from the inactive list first
■ If a page hasn’t been referenced lately, it moves to the inactive list
■ If a page is referenced, it doesn’t get moved to the active list immediately

13 / 33

Double Accesses

■ The first time a page is accessed, the PG referenced flag is set
■ The next time it’s accessed, it’s moved to the active list
■ That is, it takes two accesses for a page to be declared active
■ More precisely, it takes two accesses in different scans for a page to become

active
■ If the second access doesn’t happen soon enough, PG referenced is reset

14 / 33

6



Access States

PG active=0
PG referenced=0

refill PG active=1
PG referenced=0

PG active=0
PG referenced=1

refill PG active=1
PG referenced=1

used usedtimeout timeout

Inactive Active

used

refill

15 / 33

Access States

■ When a page is referenced, it moves to a more active state
■ After two accesses, it moves to the active list
■ When a page hasn’t been used for a while, it moves a less active state
■ After two timeouts, it moves to the inactive list
■ If memory is getting low, pages can be demoted regardless of activity state

16 / 33

7



Refilling Memory

■ Periodically try to make pages reclaimable
■ If too aggressive, too many active pages are reclaimed
■ If too timid, not enough memory will be free
■ Works adaptively

17 / 33

Adaptive Rate

■ Start by scanning a few pages to see if they should be reclaimed
■ If memory is running low, increase the rate

Controlled by prority field
■ Conversely, reduce rate if ok
■ If more memory needed, tend to swap out process’ pages

18 / 33

8



Equations

■ distress is a trouble measure: 0 is good, 100 is great trouble:
distress = 100 >> prev priority;

■ How much memory is currently mapped?
mapped ratio = (nr mapped * 100) / total memory;

■ Should we tend to swap out process pages?
swap tendency = mapped ratio / 2 + distress + vm swappiness;

■ Note: vm swappiness is tunable by the administrator. High values mean it
will swap user mode pages more readily; 0 means it almost never will.

19 / 33

Writing Dirty Pages

■ Normally, not many dirty pages are written at any one time
■ You don’t want to clog up the disk bandwidth, since the write may be useless

— if anticipatory, the page may never actually be reclaimed, or it may be
dirtied again before reclamation

■ However, if memory is low — that is, if an allocation request has failed — a
large burst can be written

20 / 33

9



Periodic Reclaiming

■ A kernel thread kswapd runs periodically to reclaim memory
■ Some must be free at all times — often need to allocate memory at interrupt

level, when sleeping is impossible
■ If there’s too little free memory in the zone (less than pages min), it tries to

find more; if more than pages high, it does nothing
■ After reclaiming 32 pages, kswapd yields the CPU and calls the scheduler, to

let other processes run

21 / 33

The Out-of-Memory Killer

■ If there’s no free and no reclaimable memory, the system is in trouble
■ Last resort: kill some process
■ Find a process that fits the following criteria: big (including its children),

hasn’t run too long, low priority, non-root

22 / 33

10



Swapping 23 / 33

The Swap Token

■ To prevent thrashing, one process at a time can hold the swap token

■ Pages belonging to the swap token owner are (almost) never reclaimed
■ The idea is to force other process’ pages out of memory, to let one process run
■ Ideally, the token should be held for a considerable amount of time, possibly

even minutes
■ The token is a pointer to the process’ memory data structure; it simply skips

any memory structure if it equals the token

24 / 33

The Swapper

■ On Linux, the swapper writes pages out to the swap area and reads in other
pages

■ Also manage swap areas on disk
■ Keeps track of mapping between per-process virtual address and disk block

address

25 / 33

11



The Swap Area

■ Frequently a separate disk partition
■ Can also be a regular file on disk, but that’s slower
■ Swap area starts with some magic values to identify the partition as a swap

area
■ Also keeps track of bad blocks

26 / 33

Distribution of Pages

■ Try to keep pages in contiguous page slots in the swap area
■ Improves performance — minimize seek time
■ (That’s why files are bad for swapping)
■ With multiple swap areas, prioritize them by access speed
■ Among swap areas of equal speed, use round-robin

27 / 33

12



The Swap Cache

■ Several race conditions possible
■ Example: two processes simultaneously try to swap in the same shared page
■ Example: a process may try to swap in a page that is currently being swapped

out
■ The swap cache is used as an intermediate owner of pages
■ All attempts to change a page’s status must go through the cache
■ This provides the requisite locking

28 / 33

vmscan.c: Where Decisions Are Made

■ The page frame reclamation algorithm
■ Decides what pages to swap out
■ Implements the LRU algorithm

29 / 33

13



struct scan control

Policy and state of PFRA decisions

nr to scan Scan this many pages
nr scanned Number actually scanned thus far
nr reclaimed Number reclaimed
nr mapped Number of mapped pages found
nr to reclaim Number to reclaim
priority Priority
may writepage Disk queue too full for writing?
may swap Can pages be swapped out here?

30 / 33

try to free pages()

■ Called when it’s time to find some free memory
■ Iterates until enough pages are found
■ Writes a group, but not too many; it then sleeps
■ If enough pages are reclaimed, it returns

31 / 33

14



refill inactive zone()

■ Moves pages from active list to inactive
■ Looks at distress level, mapped ratio, etc.

32 / 33

shrink list() – the Heart of PFRA

■ The caller (shrink cache() moves a group of pages from the LRU list to a
temporary list

■ shrink list() tries to reclaim each page on this list
■ It removes the page from the list; if it can’t reclaim it, it puts it back
■ Pages that appear to be locked for a long time are put on the active list
■ Others are kept on the inactive list, to be freed next time
■ There is no bias against reclaiming dirty pages; however, they can be written

out here

33 / 33

15


	Linux Memory Allocation
	Page Descriptor
	Non-Uniform Memory Access
	Memory Zones
	High Memory
	Slab Allocator

	Linux Page Frame Reclaiming Algorithm
	Principles
	Types of Pages
	Mapped versus Anonymous Pages
	Reclamation Principles
	When to Reclaim Memory
	The LRU Lists
	Double Accesses
	Access States
	Access States
	Refilling Memory
	Adaptive Rate
	Equations
	Writing Dirty Pages
	Periodic Reclaiming
	The Out-of-Memory Killer

	Swapping
	The Swap Token
	The Swapper
	The Swap Area
	Distribution of Pages
	The Swap Cache
	vmscan.c: Where Decisions Are Made
	struct scan_control
	try_to_free_pages()
	refill_inactive_zone()
	shrink_list() -- the Heart of PFRA


