Design Issues 1/36

Local versus Global Allocation

m When process A has a page fault, where does the new page frame come from?

m More precisely, is one of A's pages reclaimed, or can a page frame be taken
from another process?

m If another process, do we bias the selection in any fashion?

» |f page replacement affects only the current process, we have a local policy; if
we look at all processes, we have a global allocation policy

1/36

Choosing

m Global policies tend to work better

m |f you use a local policy and the working set grows, you can get thrashing

= Similarly, if the working set shrinks, you waste memory

» With a global policy, though, you need to decide how much memory to
allocate to each process

2 /36

Memory Allocation

m Fixed allocation — the same amount of space for all processes (a = m/p) —
is too simplistic

m Better idea — allocate each process some memory in proportion to its size:
a;=m-m;/ S m;

» Do we want to use size or working set?

= What about process priority? a; = m - (fyyio(mi)/ SRR Y

3 /36

Memory Requirements Change

m Processes grow and shrink

» Working sets grow and shrink

m Allocations must be changed over time

m Monitor the page fault frequency (PFF) for each process

m A process with a high PFF gets a larger allocation; a process with a small PFF
gets a smaller allocation

4 /36

Measuring PFF

m Count the number of page faults per second

m Accumulate this as a moving average, of the type we've seen several times
before

m For many algorithms, including LRU, PFF goes down as memory allocation
Increases

5/ 36

Algorithms versus Allocation

m Algorithms such as LRU and FIFO work with either local or global allocation
policies

m Working set and WSclock are local-only

m There's no such thing as a working set for the entire system

m Must rely on allocation policy for global effects

6 / 36

Swapping

m As mentioned, the paging system has to interact with the scheduler

m Thrashing can be detected when the PFF rate of some processes has gone up,
but none have gone down

s Must swap some processes to disk: write out all (or most) of their pages and
reclaim their page frames

7 /36

Controlling Swapping

m Which processes should get swapped out?

m Do we look at priority? Size? History?

m Once processes are swapped out, when do they come back in?

m Need a two-level scheduler, one for ordinary CPU access and one for swapping
out and in

m For this second scheduler, what are we optimizing for? CPU utilization?
Throughput?

8 / 36

Page Size

With large pages, we waste memory: on average, half of the last page isn't
used

With small pages, we use a lot of memory for page tables

Call the average process size s and the page size p. Assume that each page
table entry (and associated data structures) takes e bytes

The overhead o is 0 = (s/p)e + p/2

To optimize for memory use, differentiate and set to O:

do/dp = —se/p* +1/2 =10

Best size: p = v/2se

9 /36

Simulating Larger Pages

Possible to treat several smaller pages as one larger page

Still need separate hardware page table entries, but can reduce overhead
elsewhere

Big gain: fewer page faults

Other gains: auxiliary data structures

10 / 36

Page Sharing and Remapping

m Context switch overhead can be reduced by page-sharing

m Example: shared memory in Unix (shmat (), shmget (), etc.) share memory
between processes

m Caution: processes must use appropriate locks

s Comm pages allow processes to read (some) kernel data

m Example: getpid() can be a simple subroutine

11 / 36

Memory-Mapped 1/0

m Instead of doing I/O, processes map a file onto a memory area, i.e., mmap ()

m Easy random access

m Let the page algorithm handle the I/O

s On Multics, there was no disk 1/0; all files were simply areas of memory

» Disadvantage: file size was limited by address space (actually, by segment size)

12 / 36

Page-Mapped 1/0

= Suppose a user /0 buffer is page-sized and page-aligned

m Make sure that kernel disk buffers are page-sized and page aligned, too

m When the user process does a read (), change the page table so that the disk
buffer is mapped to user space and the user’s buffer becomes part of kernel
memory

m No overhead for copying!

m Harder to do for write () — does the user process still want access to its
data?

m Can sometimes “lend” pages, but mark them read-only

13/ 36
Don’t Copy!
m Copying bulk data is very expensive
m Limited by memory bandwidth; could use a lot of cache space
m |t's worth considerable effort to avoid handling data extra times
14 / 36

Allocating Swap Space

n Where does swap space come from?

= Some systems allocate swap space as soon as the application is given main
memory

m In other words, all of the memory of every process has a reserved spot on disk

m Other systems allocate space as needed

s What if they run out?

15 / 36

Storage for Disk Mapping

m Where is the disk block address stored for a page?

m Some systems reuse the page table entry if the “valid” bit is off

m Works poorly if there's a lot of swap space

m Doesn't work if if you keep the disk images of pages in case they're not dirty
when reclaimed

16 / 36

Segmentation 17 / 36

Logical Segmentation

Earlier, we talked about segments for VM

There's another type: user-controlled segments

Segments introduce non-linearity into the address space

There's no carry into the segment bits when doing address arithmetic

17 / 36

Why Use Segments?

m Code, data, and the stack are each separate segments

m Shared libraries can each occupy a separate segment

m [hat way, only the segment pointer needs to be separate; the same page table
can be used for each process using the library

» In Multics, each file was mapped to a particular segment

18 / 36

Protection and Segments

m Segments can have memory protection bits associated with them
m For the uses just described, this is more convenient and more natural than
protecting each page independently

19 / 36

The Problems with Segments

» Maximum contiguous address space is limited by segment size

m For example, on the Intel 286, segments were limited to 64K; that meant that
no array could be larger than 64K bytes

m Explicit segments are not often used today

20 / 36

10

Segments on the Pentium

Six segment registers: code, data, four others

8K system and 8K user segments permitted

A segment descriptor contains a base/limit pair and a pointer to memory
That memory address may be virtual, in which case two levels of page table
are used

Three extra memory look-ups per memory reference!

Good thing we have a TLB. ..

21 / 36

Memory Allocation 22 / 36

Types of Memory

Kernel code — wired down (but some systems have used disk-resident system
calls that are swapped in as needed)

User code — paged in and out

Page tables — must be dynamically allocated

Stacks — also dynamically allocated

Disk 1/0 buffers

Network /O buffers

22 / 36

11

Network 1/0O Buffers

Allocation can be fixed
If a user process writes too much, block
If a remote process writes too much, use flow control to make it shut up

If it doesn't listen, drop packets

23 / 36

Disk 1/0 Buffers

= How much memory should be allocated for disk 1/O buffers?

m Simplest solution: some fixed percentage of memory

m Better solution: dynamically use memory for disk or for applications, as needed
s When system goes |/O-bound, leave fewer pages for applications

s When system is memory-bound, use fewer pages for disk /O

m Sounds good, but getting the balance right is tricky

24 / 36

12

Kernel Memory Allocation

Many kernel routines need to allocate memory dynamically

Similar to malloc () for application programs

These routines generally grab pages

If there are no page frames free, the request can fail

Often, there is a process context, and the process can block while waiting for a

page
Sometimes, the memory reclamation daemon is told to speed up

25 / 36

Managing Kernel Memory

Kernel memory allocation is very similar to non-VM memory region allocation

and malloc() allocation
As before, see Knuth vol. 1 for details
But — some systems will change the kernel's memory map to permit creation

of large contiguous memory regions

26 / 36

13

Modeling Paging Systems 27 / 36

A Theory of Paging?

m Can we figure out a theory of paging?
m Can we predict performance?
m Can we explain — or prevent — things like Belady's Anomaly?

27 / 36

Reference Strings

m A process can be characterized by an ordered list of the pages it accesses

m This is called the reference string

m A paging system can be described by three things: the reference string of the
process, the page replacement algorithm, and the number of page frames
available

28 / 36

14

An Abstract Model

m [he process we're modeling has n pages

m There are m page frames

m Assume an n-element array M that keeps track of memory
s M[n—m:n — 1] represents in-memory pages

s M][0:n—m — 1] contains all other pages

29 / 36

Simulating the Process

m Take an entry from the reference string

m If the top half of M has room, put the page in it

m Otherwise, there's a page fault

m Apply the selected algorithm to move a page from the top of M to the bottom
» Move the new page to the top half

m Rearrange the top and bottom halves according to the algorithm

30 / 36

15

Simulating LRU

Reference stringis021354637473355.
Four page frames available.

(0[2]1]3]5[4]|6]3[7]4]7[3|3]5|5]
0/2|1[3|5(4|6|3[/74|7/3|3|/5]|5
012|113 |5/4/6/3|7|4(7|7|3]|3
0(2[1(3|51|4|6|3|3(4(4|7|7
0/2|11(3|5/4|6/6/6/(6/4 4

0/ 2]1|1]5|5/5/5|/5/6|6
0/2(2]/1|1f1/1|1|1/1
0(012(2|2]|2(2]2]|2

0(0{0(0|0[0]O

P PIPIP|P|P|P P P
00|00 |00 00| 00|00 4100(412/3|1|5]|1

31 /36

Stack Algorithms

If m varies over the possible page frames and r is an index into the reference

strings, we may have

M(m

) C M(m+1,r)

That is, for a given initial sequence of a reference string, those pages that are
at the top of M will still be in the top of M if there is one more page frame
Algorithms that satisfy this property are called stack algorithms

Belady’'s Anomaly cannot occur with stack algorithms

32 / 36

16

Is LRU a Stack Algorithm?

Whenever a page is pushed below the line in LRU, it goes to the top of the
bottom section

If we move the boundary down by one page frame, we therefore include the
previously-displaced page

That means that the stack property holds — LRU is indeed a stack algorithm
FIFO is not

33 / 36

Distance Strings

Assume a stack algorithm

A distance string d is a set of page references where the value is “distance
from the top of the stack”

An unreferenced page isn't on the stack and has distance oo

Distance strings are algorithm-dependent

Small values are good; they indicate locality of reference

You want most elements of d to be less than the number of page frames
If d is mostly large numbers, you're out of luck

34 / 36

17

Predicting Page Fault Rates

m Scan the distance string and see how many times each value occurs
m Let C; be the number of times 7 is found; C,, exists, too

m For our example, (C1,Cy,...,C7,Cyx) = (4,2,1,4,2,2,1,8)

m If m is the number of page frames,

Fm — Z Ok + Coo
k=m+1

m F}, is the number of page faults for that distance string and number of page
frames

35 / 36

Origin of our Strings

m Where do reference and distance strings come from?
m As always, we can simulate them, but we're much better off getting real traces

from real programs
m Note the implication: paging algorithm behavior can change if our workload

changes

36 / 36

18

	Design Issues
	Local versus Global Allocation
	Choosing
	Memory Allocation
	Memory Requirements Change
	Measuring PFF
	Algorithms versus Allocation
	Swapping
	Controlling Swapping
	Page Size
	Simulating Larger Pages
	Page Sharing and Remapping
	Memory-Mapped I/O
	Page-Mapped I/O
	Don't Copy!
	Allocating Swap Space
	Storage for Disk Mapping

	Segmentation
	Logical Segmentation
	Why Use Segments?
	Protection and Segments
	The Problems with Segments
	Segments on the Pentium

	Memory Allocation
	Types of Memory
	Network I/O Buffers
	Disk I/O Buffers
	Kernel Memory Allocation
	Managing Kernel Memory

	Modeling Paging Systems
	A Theory of Paging?
	Reference Strings
	An Abstract Model
	Simulating the Process
	Simulating LRU
	Stack Algorithms
	Is LRU a Stack Algorithm?
	Distance Strings
	Predicting Page Fault Rates
	Origin of our Strings

