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Page Replacement Algorithms

■ When a page fault occurs, some page that’s currently in memory needs to be
discarded to make room for a new page

■ Picking the right page to discard isn’t easy
■ Many algorithms have been studied
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Idealized Algorithm

■ Ideally, we want to discard the page that will be needed last
■ Which is that?
■ Run the program again, find out which it is; that will tell you which to replace

this time
■ Oops. . .
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Constraints

■ Must be efficient — many paging decisions take place
■ Must approximate the right answer
■ Must be implementable
■ Must be implementable on real hardware
■ Usually, must work well on multitasking systems
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Tools

■ The OS has a few tools available to it
■ The referenced bit — this page has been used recently
■ The modified bit — discarding this page will be more expensive
■ Clock interrupts
■ Page fault interrupts
■ Advice from the application
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Page Fault Interrupts

■ (Of course) enter the kernel
■ Synchronous to the running process
■ Instruction is retryable or restartable (what if the instruction’s operand crosses

a page boundary?)
■ Fault information indicates the offending address as well as the restart point
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Sometimes R and M are Missing

■ Some hardware platforms omit the M and R bits
■ They can be simulated in software
■ To imitate M , periodically mark the page read-only; if there’s a protection

fault, the page should be considered “dirty”
■ To imitate R, mark the page invalid; if there’s a page fault, it should be

considered “referenced”
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Not Recently Used (NRU)

■ At process start time, reset all R and M bits
■ On clock interrupts, clear R bits
■ Classify pages by M and R:

R M

Class 0: 0 0
Class 1: 0 1
Class 2: 1 0
Class 3: 1 1

■ On page fault, discard a random page from the lowest class
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Resetting R and M

■ Why do we reset R on clock interrupts?
■ We want to know if a page has been used recently

■ Why not reset M?
■ M can’t be reset until the page has been written out to disk; an old copy

won’t suffice
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Properties of NRU

■ Bias towards discarding unmodified pages
■ But — better to discard a modified page that hasn’t been used recently than

one that is in use
■ Simple algorithm; may give adequate performance on some systems
■ Primarily useful for teaching
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Reclaiming Modified Pages

■ Must first schedule a disk write operation
■ When it’s complete, the page frame can be reused
■ Do we keep state binding a particular inbound page to that page frame?
■ Do we make the other process wait for two disk operations before we let it run?
■ Reclaiming a page isn’t cheap!
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What’s Interesting about NRU?

■ It has the essential properties of any page replacement algorithm
■ It looks for a (relatively) idle page
■ It handles modified pages, but is biased against using them
■ It’s reasonably efficient
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FIFO 12 / 36

First In, First Out (FIFO)

■ Don’t bother with R and M

■ When a page frame is needed, discard the oldest page
■ Of course, the oldest page may still be busy, so it will come right back in
■ FIFO is rarely used in this form
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The Belady Anomaly

■ Sometimes, having more page frames hurts instead of helps
■ Very counter-intuitive
■ Example in the text using FIFO page replacement
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Second Chance FIFO

■ Similar to pure FIFO, but the R bit is checked
■ If R is set on an old page, clear the R bit but move it to the just-loaded end

of the queue
■ Note the problem: it doesn’t know if a page has been used recently or not
■ It only approximates that if page faults are frequent
■ If all pages have been referenced, degenerates to FIFO
■ FIFO can be implemented with a circular linked list; the list head is changed,

rather than moving the page table entry. This is called the clock algorithm
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The Clock Algorithm
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LRU 16 / 36

Least Recently Used (LRU)

■ Assumption: a page that hasn’t been used recently is unlikely to be used soon
■ But — how can this be implemented?
■ More precisely, what data structure do we use to track this?
■ LRU is generally a linked list; do we point to it with a hash table indexed by

page address?
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Hardware-Assisted LRU

■ Have a 64-bit instruction counter
■ On each memory reference, store the counter in a per-page frame field
■ On a page fault, scan the page table for the lowest value
■ Note: this is O(n) in the number of page frames
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A Cheaper Hardware Assist

■ For n pages, create a n× n bit matrix initialized to 0
■ When referencing page k, set row k to 1 and set column k to 0
■ The lowest binary value is the least-recently used page
■ Again, O(n) in the number of page frames
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Software-Simulated LRU

■ Have an array of counters, one per page
■ At each clock tick, add the value of R to the counter
■ Implements NFU — Not Frequently Used

■ Problem: never forgets
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NFU With Aging

■ Shift each counter right (i.e., divide by 2) before each addition
■ Add R to the high-order bit
■ Recent references have more weight
■ Pages referenced this clock tick and previous clock ticks are more important

than those referenced only this time
■ Note: still O(n), every clock tick
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Working Set 21 / 36

The Working Set

■ At any time, a program is only using a small fraction of its pages (locality of
reference)

■ The set of pages in use at the moment is the working set

■ At time t, the working set w(k, t) is the k most recently-reference pages
■ Note that w(k, t) is monotonically increasing as a function of k and it

asymptotically approaches the total program size
■ A program needs to have its working set in memory
■ If there isn’t enough memory to hold the entire working set, the program will

thrash
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Using the Working Set

■ Before running a process, make sure that the working set is in memory
■ Because k is asymptotic, the exact choice of k isn’t critical, as long as it’s

large enough
■ The trick is to determine the working set

23 / 36

Approximating the Working Set

■ Ideally, we would track the last k memory references
■ Instead, we track pages referenced during the last τ seconds
■ For each page, keep a clock field
■ At each tick, update the clock field if R is set
■ Pages not referenced during the last τ seconds may be discarded
■ Algorithm is still O(n). But we can do better.
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WSClock

■ Use the working set concept; use the clock algorithm’s data structure
■ Have a circular linked list of page frames
■ At each page fault, check the page pointed to by the clock hand; if R is 1, the

page is current and can’t be discarded; advance the clock hand
■ If R = 0, check the age. If R > τ , the page can be reused
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Dealing with Modified Pages

■ If M = 0, the page frame exists on disk and can be reused immediately. (We
initialize M to 1 if it’s never been written.)

■ If M = 1, schedule it to be written to disk and keep scanning — you might
find a clean page

■ Limit the number of writes for any pass to some value n
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What Happens if the Clock Hand Circles?

■ If some writes have been scheduled, keep looking; a write will complete
eventually

■ If no writes have been scheduled, all pages are in the working set; pick a
random clean page to reuse

■ But — the current process no longer has its working set in memory. Do we
schedule it?

■ In general, we have to be very cautious here; we don’t want the total system
to thrash
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System Issues 28 / 36

The Scheduler and Paging

■ As noted, the WSClock algorithm can force the scheduler to leave the CPU idle
■ This will generally improve total throughput
■ Also note that the pager generally needs a process context — it may want to

wait for disk I/O to complete, for example
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Anticipatory Paging

■ The system can only reclaim a page immediately if it already exists on disk;
otherwise, it has to wait for a disk operation to finish

■ When the disk subsystem is relatively idle, find and write out dirty, unused
pages

■ The M bit can then be reset, making them immediately available for reuse if
necessary
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Prepaging

■ When a process blocks for an extended period, remember its working set
■ Its pages will tend to be reclaimed, since they’re not being used
■ When the process wakes up, restore its working set to memory before resuming

execution
■ Avoid the overhead of too many page faults
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The Paging Disk

■ You want the paging disk to be as fast as possible
■ Sometimes, dedicate a separate disk to paging; avoid contention from file I/O
■ Old systems often used drums or head-per-track disks, to minimize or avoid

rotational delay or seek time
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Sharing Page Tables

■ If two processes are running the same executable and code pages are read-only,
the two can share the same page table

■ Do they share the same working set data structure? What if a page is in one
process’ working set but not the other’s?

■ Extra data structures are needed to track such shared pages; reference
counters are mandatory
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Page-Faulting in Executables

■ Suppose that files with executables are formatted like page areas?
■ That is, each in-memory page of the program begins on a disk block boundary
■ Metadata and data areas are in different blocks
■ No need to read in a program before executing it; just set up the paging data

structures to point to the actual file
■ This is one reason an executing file can’t be opened for output
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Implementing Copy on Write

■ When discussing processes, we talked about “copy on write”. We can now see
how to implement it

■ The code pages are shared
■ The two processes share data pages but not the page table for the data area
■ The shared pages are marked read-only in both processes
■ When a protection fault occurs, the page is copied to an empty page frame

(where does it come from?), and both page table entries are updated
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Locking Pages

■ Real-time systems can’t afford page faults, at least on parts of the program
■ Solution: let the application lock some pages into memory
■ Also used for some I/O
■ If too many pages are locked, it can affect overall system performance
■ Locking is thus restricted, either to root or to a certain quota (run ulimit -a

on CLIC)
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Summary

■ NRU is never actually used
■ Plain FIFO works poorly; second chance FIFO works reasonably well
■ NFU with aging is a good choice
■ WSClock is efficient and gives good results
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