
Basic Principles 1 / 36

Page Replacement Algorithms

■ When a page fault occurs, some page that’s currently in memory needs to be
discarded to make room for a new page

■ Picking the right page to discard isn’t easy
■ Many algorithms have been studied

1 / 36

Idealized Algorithm

■ Ideally, we want to discard the page that will be needed last
■ Which is that?
■ Run the program again, find out which it is; that will tell you which to replace

this time
■ Oops. . .

2 / 36

1

Constraints

■ Must be efficient — many paging decisions take place
■ Must approximate the right answer
■ Must be implementable
■ Must be implementable on real hardware
■ Usually, must work well on multitasking systems

3 / 36

Tools

■ The OS has a few tools available to it
■ The referenced bit — this page has been used recently
■ The modified bit — discarding this page will be more expensive
■ Clock interrupts
■ Page fault interrupts
■ Advice from the application

4 / 36

2

Page Fault Interrupts

■ (Of course) enter the kernel
■ Synchronous to the running process
■ Instruction is retryable or restartable (what if the instruction’s operand crosses

a page boundary?)
■ Fault information indicates the offending address as well as the restart point

5 / 36

Sometimes R and M are Missing

■ Some hardware platforms omit the M and R bits
■ They can be simulated in software
■ To imitate M , periodically mark the page read-only; if there’s a protection

fault, the page should be considered “dirty”
■ To imitate R, mark the page invalid; if there’s a page fault, it should be

considered “referenced”

6 / 36

3

NRU 7 / 36

Not Recently Used (NRU)

■ At process start time, reset all R and M bits
■ On clock interrupts, clear R bits
■ Classify pages by M and R:

R M

Class 0: 0 0
Class 1: 0 1
Class 2: 1 0
Class 3: 1 1

■ On page fault, discard a random page from the lowest class

7 / 36

Resetting R and M

■ Why do we reset R on clock interrupts?
■ We want to know if a page has been used recently

■ Why not reset M?
■ M can’t be reset until the page has been written out to disk; an old copy

won’t suffice

8 / 36

4

Properties of NRU

■ Bias towards discarding unmodified pages
■ But — better to discard a modified page that hasn’t been used recently than

one that is in use
■ Simple algorithm; may give adequate performance on some systems
■ Primarily useful for teaching

9 / 36

Reclaiming Modified Pages

■ Must first schedule a disk write operation
■ When it’s complete, the page frame can be reused
■ Do we keep state binding a particular inbound page to that page frame?
■ Do we make the other process wait for two disk operations before we let it run?
■ Reclaiming a page isn’t cheap!

10 / 36

5

What’s Interesting about NRU?

■ It has the essential properties of any page replacement algorithm
■ It looks for a (relatively) idle page
■ It handles modified pages, but is biased against using them
■ It’s reasonably efficient

11 / 36

FIFO 12 / 36

First In, First Out (FIFO)

■ Don’t bother with R and M

■ When a page frame is needed, discard the oldest page
■ Of course, the oldest page may still be busy, so it will come right back in
■ FIFO is rarely used in this form

12 / 36

6

The Belady Anomaly

■ Sometimes, having more page frames hurts instead of helps
■ Very counter-intuitive
■ Example in the text using FIFO page replacement

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7

N
um

be
r

of
 p

ag
e

fa
ul

ts

Number of page frames

"belady.data"

13 / 36

Second Chance FIFO

■ Similar to pure FIFO, but the R bit is checked
■ If R is set on an old page, clear the R bit but move it to the just-loaded end

of the queue
■ Note the problem: it doesn’t know if a page has been used recently or not
■ It only approximates that if page faults are frequent
■ If all pages have been referenced, degenerates to FIFO
■ FIFO can be implemented with a circular linked list; the list head is changed,

rather than moving the page table entry. This is called the clock algorithm

14 / 36

7

The Clock Algorithm

Page
Data Structure

Page
Data Structure

Page
Data Structure

Page
Data Structure

Page
Data Structure

Page
Data Structure

15 / 36

8

LRU 16 / 36

Least Recently Used (LRU)

■ Assumption: a page that hasn’t been used recently is unlikely to be used soon
■ But — how can this be implemented?
■ More precisely, what data structure do we use to track this?
■ LRU is generally a linked list; do we point to it with a hash table indexed by

page address?

16 / 36

9

Hardware-Assisted LRU

■ Have a 64-bit instruction counter
■ On each memory reference, store the counter in a per-page frame field
■ On a page fault, scan the page table for the lowest value
■ Note: this is O(n) in the number of page frames

17 / 36

A Cheaper Hardware Assist

■ For n pages, create a n× n bit matrix initialized to 0
■ When referencing page k, set row k to 1 and set column k to 0
■ The lowest binary value is the least-recently used page
■ Again, O(n) in the number of page frames

18 / 36

10

Software-Simulated LRU

■ Have an array of counters, one per page
■ At each clock tick, add the value of R to the counter
■ Implements NFU — Not Frequently Used

■ Problem: never forgets

19 / 36

NFU With Aging

■ Shift each counter right (i.e., divide by 2) before each addition
■ Add R to the high-order bit
■ Recent references have more weight
■ Pages referenced this clock tick and previous clock ticks are more important

than those referenced only this time
■ Note: still O(n), every clock tick

20 / 36

11

Working Set 21 / 36

The Working Set

■ At any time, a program is only using a small fraction of its pages (locality of
reference)

■ The set of pages in use at the moment is the working set

■ At time t, the working set w(k, t) is the k most recently-reference pages
■ Note that w(k, t) is monotonically increasing as a function of k and it

asymptotically approaches the total program size
■ A program needs to have its working set in memory
■ If there isn’t enough memory to hold the entire working set, the program will

thrash

21 / 36

12

Working Set
w

(k
,t)

k

22 / 36

13

Using the Working Set

■ Before running a process, make sure that the working set is in memory
■ Because k is asymptotic, the exact choice of k isn’t critical, as long as it’s

large enough
■ The trick is to determine the working set

23 / 36

Approximating the Working Set

■ Ideally, we would track the last k memory references
■ Instead, we track pages referenced during the last τ seconds
■ For each page, keep a clock field
■ At each tick, update the clock field if R is set
■ Pages not referenced during the last τ seconds may be discarded
■ Algorithm is still O(n). But we can do better.

24 / 36

14

WSClock

■ Use the working set concept; use the clock algorithm’s data structure
■ Have a circular linked list of page frames
■ At each page fault, check the page pointed to by the clock hand; if R is 1, the

page is current and can’t be discarded; advance the clock hand
■ If R = 0, check the age. If R > τ , the page can be reused

25 / 36

Dealing with Modified Pages

■ If M = 0, the page frame exists on disk and can be reused immediately. (We
initialize M to 1 if it’s never been written.)

■ If M = 1, schedule it to be written to disk and keep scanning — you might
find a clean page

■ Limit the number of writes for any pass to some value n

26 / 36

15

What Happens if the Clock Hand Circles?

■ If some writes have been scheduled, keep looking; a write will complete
eventually

■ If no writes have been scheduled, all pages are in the working set; pick a
random clean page to reuse

■ But — the current process no longer has its working set in memory. Do we
schedule it?

■ In general, we have to be very cautious here; we don’t want the total system
to thrash

27 / 36

System Issues 28 / 36

The Scheduler and Paging

■ As noted, the WSClock algorithm can force the scheduler to leave the CPU idle
■ This will generally improve total throughput
■ Also note that the pager generally needs a process context — it may want to

wait for disk I/O to complete, for example

28 / 36

16

Anticipatory Paging

■ The system can only reclaim a page immediately if it already exists on disk;
otherwise, it has to wait for a disk operation to finish

■ When the disk subsystem is relatively idle, find and write out dirty, unused
pages

■ The M bit can then be reset, making them immediately available for reuse if
necessary

29 / 36

Prepaging

■ When a process blocks for an extended period, remember its working set
■ Its pages will tend to be reclaimed, since they’re not being used
■ When the process wakes up, restore its working set to memory before resuming

execution
■ Avoid the overhead of too many page faults

30 / 36

17

The Paging Disk

■ You want the paging disk to be as fast as possible
■ Sometimes, dedicate a separate disk to paging; avoid contention from file I/O
■ Old systems often used drums or head-per-track disks, to minimize or avoid

rotational delay or seek time

31 / 36

Sharing Page Tables

■ If two processes are running the same executable and code pages are read-only,
the two can share the same page table

■ Do they share the same working set data structure? What if a page is in one
process’ working set but not the other’s?

■ Extra data structures are needed to track such shared pages; reference
counters are mandatory

32 / 36

18

Page-Faulting in Executables

■ Suppose that files with executables are formatted like page areas?
■ That is, each in-memory page of the program begins on a disk block boundary
■ Metadata and data areas are in different blocks
■ No need to read in a program before executing it; just set up the paging data

structures to point to the actual file
■ This is one reason an executing file can’t be opened for output

33 / 36

Implementing Copy on Write

■ When discussing processes, we talked about “copy on write”. We can now see
how to implement it

■ The code pages are shared
■ The two processes share data pages but not the page table for the data area
■ The shared pages are marked read-only in both processes
■ When a protection fault occurs, the page is copied to an empty page frame

(where does it come from?), and both page table entries are updated

34 / 36

19

Locking Pages

■ Real-time systems can’t afford page faults, at least on parts of the program
■ Solution: let the application lock some pages into memory
■ Also used for some I/O
■ If too many pages are locked, it can affect overall system performance
■ Locking is thus restricted, either to root or to a certain quota (run ulimit -a

on CLIC)

35 / 36

Summary

■ NRU is never actually used
■ Plain FIFO works poorly; second chance FIFO works reasonably well
■ NFU with aging is a good choice
■ WSClock is efficient and gives good results

36 / 36

20

	Basic Principles
	Page Replacement Algorithms
	Idealized Algorithm
	Constraints
	Tools
	Page Fault Interrupts
	Sometimes R and M are Missing

	NRU
	Not Recently Used (NRU)
	Resetting R and M
	Properties of NRU
	Reclaiming Modified Pages
	What's Interesting about NRU?

	FIFO
	First In, First Out (FIFO)
	The Belady Anomaly
	Second Chance FIFO
	The Clock Algorithm

	LRU
	Least Recently Used (LRU)
	Hardware-Assisted LRU
	A Cheaper Hardware Assist
	Software-Simulated LRU
	NFU With Aging

	Working Set
	The Working Set
	Working Set
	Using the Working Set
	Approximating the Working Set
	WSClock
	Dealing with Modified Pages
	What Happens if the Clock Hand Circles?

	System Issues
	The Scheduler and Paging
	Anticipatory Paging
	Prepaging
	The Paging Disk
	Sharing Page Tables
	Page-Faulting in Executables
	Implementing Copy on Write
	Locking Pages
	Summary

