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Jiffies

■ Each timer tick, a variable called jiffies is incremented
■ It is thus (roughly) the number of HZ since system boot
■ A 32-bit counter incremented at 1000 Hz wraps around in about 50 days
■ We need 64 bits — but there’s a problem
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Potent and Evil Magic

■ A 64-bit value cannot be accessed atomically on a 32-bit machine
■ A spin-lock is used to synchronize access to jiffies 64; kernel routines call

get jiffies 64()

■ But we don’t want to have to increment two variables each tick
■ Linker magic is used to make jiffies the low-order 32 bits of jiffies 64

■ Ugly!
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Time of Day

■ The time of day is stored in xtime, which is a struct timespec

■ It’s incremented once per tick
■ Again, a spin-lock is used to synchronize access to it
■ The apparent tick rate can be adjusted slightly, via the adjtimex() system

call
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Kernel Timers

■ Two types of timers use by kernel routines
■ Dynamic timer — call some routine after a particular interval
■ Delay loops — tight spin loops for very short delays
■ User-mode interval timers are similar to kernel dynamic timers
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Dynamic Timers

■ Specify an interval, a subroutine to call, and a parameter to pass to that
subroutine

■ Parameter used to differentiate different instantiations of the same timer — if
you have 4 Ethernet cards creating dynamic timers, the parameter is typically
the address of the per-card data structure

■ Timers can be cancelled; there is (as usual) a delicate synchronization dance
on multiprocessors. See the text for details
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Delay Functions

■ Spin in a tight loop for a short time — microseconds or nanoseconds
■ Nothing else can use that CPU during that time, except via interrupt
■ Used only when the overhead of creating a dynamic timer is too great for a

very short delay
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System Calls

■ time() and gettimeofday()

■ adjtimex() — tweaks apparent clock rate (even the best crystals drift; see
the Remote Physical Device Fingerprinting paper from my COMS E6184 class

■ setitimer() and alarm() — interval timers for applications
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The Test 9 / 46

Conditions

■ Closed book, closed notes, calculator ok
■ 75 minutes
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Format

■ Approximately 8 questions
■ I’m not asking you to write programs
■ Three types of questions

◆ Explanations of certain concepts, somewhat above the pure memorization
level

◆ Carrying out tasks based on things discussed in class
◆ Design questions (i.e., ones intended to make you think)
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Material

■ If it’s in my slides or I said it in class, you’re responsible for it
■ There will be some material based more on Tanenbaum; there won’t be much

from Linux internals
■ You’re responsible for the assigned readings at about the level of class

coverage.
■ I’m not going to ask you to memorize the crazy synchronization algorithms,

but if one shows up you should be prepared to explain it
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Limits

■ I can’t quiz you on everything I’ve covered in a dozen lectures
■ I can’t review 15 hours of class time today
■ I’m to some extent limited by the kinds of things it’s feasible to ask on an exam
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What’s an Operating System?

■ Resource manger
■ Multiplexor
■ Fairness
■ Protection
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Pieces of an OS

■ Kernel
■ Scheduler
■ Memory management
■ File systems
■ Device drivers
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History of Operating Systems

■ Single-user
■ Punchcard+printer — spooling to mag tape
■ Early “monitor” programs
■ Lack of memory protection
■ I/O libraries
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3rd Generation Computers

■ Disks, memory protection, schedulers
■ Reasons: efficiency; CPUs were expensive
■ Timesharing
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Minicomputers

■ Much cheaper
■ Used similarly to old systems — no memory protection, small disks if any, etc.
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Microcomputers

■ Same evolutionary path
■ Took almost 20 years to get modern OS features
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Hardware Features

■ Memory protection
■ Privileged operations
■ Interrupts and system calls
■ Timers
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Multiprogramming

■ Run several programs at once; precise order and timing don’t matter
■ What’s a process? Separately scheduled, protection, isolation, distinct from

threads
■ Lots of per-process state
■ User- and kernel-level stacks
■ Process creation and inheritance
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Processes

■ Separately scheduled; isolated and protected
■ Lots of per-process state
■ Kernel stack per process
■ Process creation: copying, inheritance, etc.
■ Process relationships
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Threads

■ Non-preemptive scheduling
■ Used in most graphical applications
■ Implementable three different ways: user, kernel, scheduler activations
■ The need for reentrancy
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Signals

■ Interrupts to process
■ Catchable; different default actions
■ Watch for race conditions
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Linux Processes and Interrupts

■ Reality is more complex: efficiency
■ Lightweight processes: used for threads; less to copy
■ Several data structures, some indirect; kernel stack pointer is the handle for

most of them
■ Wait queues for sleeping processes
■ Processes put themselves to sleep
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Switching Processes

■ Save general registers on the stack; other hardware context in task struct

■ Loading new state switches processes; the stack pointer determines most of
the state

■ Changing the kernel stack pointer changes the process
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Creating a Process

■ Fork() vs. vfork() vs. clone()
■ Copy on write for memory — why?
■ Exiting — must close files; process is a zombie until wait() call issued
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Interrupts

■ Synchronous (faults and traps) vs. asynchronous
■ IRQs and priorities
■ Interrupt masking
■ Entering an interrupt handler; returning from interrupts
■ First- vs. second-level interrupt handlers
■ No process context for interrupts
■ Deferred work — softirqs, tasklets, work queues
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System Calls

■ Why?
■ C code vs. assembler glue
■ Calling conventions: stack vs. registers
■ Copying data to/from user space
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Race Conditions; Critical Regions

■ Why they happen
■ Where they can happen
■ Critical regions and blocking
■ Desired properties
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Lock Variables

■ Care needed; must have atomicity
■ Test and Set Lock — locks memory bus
■ Strict alternation; properties of Peterson’s Algorithm
■ Spin locks and priority inversion
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Semaphores

■ Operations: down and up; what they do
■ Different uses of semaphores: counting vs. exclusion (mutex)
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Monitors

■ Programming language construct
■ Operations: wait and signal
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Synchronization Problems

■ Dining philosophers
■ Watch for deadlocks and starvation
■ Readers and writers
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Deadlock

■ What’s a deadlock?
■ Conditions for deadlocks
■ Recovery, avoidance, prevention
■ Release and rerequest
■ Two-phase locking
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Scheduling

■ What is it?
■ Types of schedulers and their goals
■ Batch, interactive, real-time
■ First come, first served
■ Shortest first
■ Shortest remaining time
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Interactive Scheduling

■ Round robin
■ Quantum length issues: responsiveness vs. overhead; variable size
■ Priority scheduling and aging
■ Interactivity boost
■ Security issues
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More Scheduling

■ Process history — moving average
■ Guaranteed scheduling
■ Lottery scheduling
■ Fair share scheduling
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Real-Time Scheduling

■ Hard vs. soft real-time
■ Periodic vs. aperiodic; mixing with non-real-time
■ Rate Monotonic
■ Earliest Deadline First

40 / 46

Multiprocessing

■ Asymmetric vs. symmetric
■ Locking: fine-grained vs. coarse
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Measuring Time

■ Statistical time
■ I/O, memory, and the scheduler
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Evaluation

■ What’s the metric? What are you optimizing for?
■ Deterministic, queueing theory, simulation, build it
■ Limits to evaluation
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Linux Scheduler

■ O(1)
■ Run queue per processor
■ 140 run queues per processor
■ High priority processes get long quanta
■ Dynamic priority for quick boost
■ Run each queue once before starting at the high priority again
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Sleeping and Waking

■ Processes sleep on queues
■ Queues are awakened, not processes; must check if condition is satisfied
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Timers

■ Time of day and interval timer
■ Types of timers
■ What happens at each tick?
■ Dynamic timers
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