
Timers 1 / 46

Jiffies

■ Each timer tick, a variable called jiffies is incremented
■ It is thus (roughly) the number of HZ since system boot
■ A 32-bit counter incremented at 1000 Hz wraps around in about 50 days
■ We need 64 bits — but there’s a problem

2 / 46

Potent and Evil Magic

■ A 64-bit value cannot be accessed atomically on a 32-bit machine
■ A spin-lock is used to synchronize access to jiffies 64; kernel routines call

get jiffies 64()

■ But we don’t want to have to increment two variables each tick
■ Linker magic is used to make jiffies the low-order 32 bits of jiffies 64

■ Ugly!

3 / 46

1



Time of Day

■ The time of day is stored in xtime, which is a struct timespec

■ It’s incremented once per tick
■ Again, a spin-lock is used to synchronize access to it
■ The apparent tick rate can be adjusted slightly, via the adjtimex() system

call

4 / 46

Kernel Timers

■ Two types of timers use by kernel routines
■ Dynamic timer — call some routine after a particular interval
■ Delay loops — tight spin loops for very short delays
■ User-mode interval timers are similar to kernel dynamic timers

5 / 46

2



Dynamic Timers

■ Specify an interval, a subroutine to call, and a parameter to pass to that
subroutine

■ Parameter used to differentiate different instantiations of the same timer — if
you have 4 Ethernet cards creating dynamic timers, the parameter is typically
the address of the per-card data structure

■ Timers can be cancelled; there is (as usual) a delicate synchronization dance
on multiprocessors. See the text for details

6 / 46

Delay Functions

■ Spin in a tight loop for a short time — microseconds or nanoseconds
■ Nothing else can use that CPU during that time, except via interrupt
■ Used only when the overhead of creating a dynamic timer is too great for a

very short delay

7 / 46

3



System Calls

■ time() and gettimeofday()

■ adjtimex() — tweaks apparent clock rate (even the best crystals drift; see
the Remote Physical Device Fingerprinting paper from my COMS E6184 class

■ setitimer() and alarm() — interval timers for applications

8 / 46

The Test 9 / 46

Conditions

■ Closed book, closed notes, calculator ok
■ 75 minutes

10 / 46

4



Format

■ Approximately 8 questions
■ I’m not asking you to write programs
■ Three types of questions

◆ Explanations of certain concepts, somewhat above the pure memorization
level

◆ Carrying out tasks based on things discussed in class
◆ Design questions (i.e., ones intended to make you think)

11 / 46

Material

■ If it’s in my slides or I said it in class, you’re responsible for it
■ There will be some material based more on Tanenbaum; there won’t be much

from Linux internals
■ You’re responsible for the assigned readings at about the level of class

coverage.
■ I’m not going to ask you to memorize the crazy synchronization algorithms,

but if one shows up you should be prepared to explain it

12 / 46

5



Limits

■ I can’t quiz you on everything I’ve covered in a dozen lectures
■ I can’t review 15 hours of class time today
■ I’m to some extent limited by the kinds of things it’s feasible to ask on an exam

13 / 46

Review 14 / 46

What’s an Operating System?

■ Resource manger
■ Multiplexor
■ Fairness
■ Protection

15 / 46

6



Pieces of an OS

■ Kernel
■ Scheduler
■ Memory management
■ File systems
■ Device drivers

16 / 46

History of Operating Systems

■ Single-user
■ Punchcard+printer — spooling to mag tape
■ Early “monitor” programs
■ Lack of memory protection
■ I/O libraries

17 / 46

7



3rd Generation Computers

■ Disks, memory protection, schedulers
■ Reasons: efficiency; CPUs were expensive
■ Timesharing

18 / 46

Minicomputers

■ Much cheaper
■ Used similarly to old systems — no memory protection, small disks if any, etc.

19 / 46

8



Microcomputers

■ Same evolutionary path
■ Took almost 20 years to get modern OS features

20 / 46

Hardware Features

■ Memory protection
■ Privileged operations
■ Interrupts and system calls
■ Timers

21 / 46

9



Multiprogramming

■ Run several programs at once; precise order and timing don’t matter
■ What’s a process? Separately scheduled, protection, isolation, distinct from

threads
■ Lots of per-process state
■ User- and kernel-level stacks
■ Process creation and inheritance

22 / 46

Processes

■ Separately scheduled; isolated and protected
■ Lots of per-process state
■ Kernel stack per process
■ Process creation: copying, inheritance, etc.
■ Process relationships

23 / 46

10



Threads

■ Non-preemptive scheduling
■ Used in most graphical applications
■ Implementable three different ways: user, kernel, scheduler activations
■ The need for reentrancy

24 / 46

Signals

■ Interrupts to process
■ Catchable; different default actions
■ Watch for race conditions

25 / 46

11



Linux Processes and Interrupts

■ Reality is more complex: efficiency
■ Lightweight processes: used for threads; less to copy
■ Several data structures, some indirect; kernel stack pointer is the handle for

most of them
■ Wait queues for sleeping processes
■ Processes put themselves to sleep

26 / 46

Switching Processes

■ Save general registers on the stack; other hardware context in task struct

■ Loading new state switches processes; the stack pointer determines most of
the state

■ Changing the kernel stack pointer changes the process

27 / 46

12



Creating a Process

■ Fork() vs. vfork() vs. clone()
■ Copy on write for memory — why?
■ Exiting — must close files; process is a zombie until wait() call issued

28 / 46

Interrupts

■ Synchronous (faults and traps) vs. asynchronous
■ IRQs and priorities
■ Interrupt masking
■ Entering an interrupt handler; returning from interrupts
■ First- vs. second-level interrupt handlers
■ No process context for interrupts
■ Deferred work — softirqs, tasklets, work queues

29 / 46

13



System Calls

■ Why?
■ C code vs. assembler glue
■ Calling conventions: stack vs. registers
■ Copying data to/from user space

30 / 46

Race Conditions; Critical Regions

■ Why they happen
■ Where they can happen
■ Critical regions and blocking
■ Desired properties

31 / 46

14



Lock Variables

■ Care needed; must have atomicity
■ Test and Set Lock — locks memory bus
■ Strict alternation; properties of Peterson’s Algorithm
■ Spin locks and priority inversion

32 / 46

Semaphores

■ Operations: down and up; what they do
■ Different uses of semaphores: counting vs. exclusion (mutex)

33 / 46

15



Monitors

■ Programming language construct
■ Operations: wait and signal

34 / 46

Synchronization Problems

■ Dining philosophers
■ Watch for deadlocks and starvation
■ Readers and writers

35 / 46

16



Deadlock

■ What’s a deadlock?
■ Conditions for deadlocks
■ Recovery, avoidance, prevention
■ Release and rerequest
■ Two-phase locking

36 / 46

Scheduling

■ What is it?
■ Types of schedulers and their goals
■ Batch, interactive, real-time
■ First come, first served
■ Shortest first
■ Shortest remaining time

37 / 46

17



Interactive Scheduling

■ Round robin
■ Quantum length issues: responsiveness vs. overhead; variable size
■ Priority scheduling and aging
■ Interactivity boost
■ Security issues

38 / 46

More Scheduling

■ Process history — moving average
■ Guaranteed scheduling
■ Lottery scheduling
■ Fair share scheduling

39 / 46

18



Real-Time Scheduling

■ Hard vs. soft real-time
■ Periodic vs. aperiodic; mixing with non-real-time
■ Rate Monotonic
■ Earliest Deadline First

40 / 46

Multiprocessing

■ Asymmetric vs. symmetric
■ Locking: fine-grained vs. coarse

41 / 46

19



Measuring Time

■ Statistical time
■ I/O, memory, and the scheduler

42 / 46

Evaluation

■ What’s the metric? What are you optimizing for?
■ Deterministic, queueing theory, simulation, build it
■ Limits to evaluation

43 / 46

20



Linux Scheduler

■ O(1)
■ Run queue per processor
■ 140 run queues per processor
■ High priority processes get long quanta
■ Dynamic priority for quick boost
■ Run each queue once before starting at the high priority again

44 / 46

Sleeping and Waking

■ Processes sleep on queues
■ Queues are awakened, not processes; must check if condition is satisfied

45 / 46

21



Timers

■ Time of day and interval timer
■ Types of timers
■ What happens at each tick?
■ Dynamic timers

46 / 46

22


	Timers
	Jiffies
	Potent and Evil Magic
	Time of Day
	Kernel Timers
	Dynamic Timers
	Delay Functions
	System Calls

	The Test
	Conditions
	Format
	Material
	Limits

	Review
	What's an Operating System?
	Pieces of an OS
	History of Operating Systems
	3rd Generation Computers
	Minicomputers
	Microcomputers
	Hardware Features
	Multiprogramming
	Processes
	Threads
	Signals
	Linux Processes and Interrupts
	Switching Processes
	Creating a Process
	Interrupts
	System Calls
	Race Conditions; Critical Regions
	Lock Variables
	Semaphores
	Monitors
	Synchronization Problems
	Deadlock
	Scheduling
	Interactive Scheduling
	More Scheduling
	Real-Time Scheduling
	Multiprocessing
	Measuring Time
	Evaluation
	Linux Scheduler
	Sleeping and Waking
	Timers


