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■ The Linux scheduler tries to be very efficient
■ To do that, it uses some complex data

structures
■ Some of what it does actually contradicts the

schemes we’ve been discussing. . .
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■ Use large quanta for important processes
■ Modify quanta based on CPU use
■ Bind processes to CPUs
■ Do everything in O(1) time
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■ Have a separate run queue for each processor
■ Each processor only selects processes from its

own queue to run
■ Yes, it’s possible for one processor to be idle

while others have jobs waiting in their run
queues

■ Periodically, the queues are rebalanced: if one
processor’s run queue is too long, some
processes are moved from it to another
processor’s queue
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■ Each process has a bitmask saying what CPUs
it can run on

■ Normally, of course, all CPUs are listed
■ Processes can change the mask
■ The mask is inherited by child processes (and

threads), thus tending to keep them on the
same CPU

■ Rebalancing does not override affinity
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■ Find the highest-priority queue with a runnable
process

■ Find the first process on that queue
■ Calculate its quantum size
■ Let it run
■ When its time is up, put it on the expired list
■ Repeat
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■ 140 separate queues, one for each priority level
■ Actually, that number can be changed at a

given site
■ Actually, two sets, active and expired

■ Priorities 0-99 for real-time processes
■ Priorities 100-139 for normal processes; value

set via nice() system call
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■ There is a bit map indicating which queues
have processes that are ready to run

■ Find the first bit that’s set:

◆ 140 queues ⇒ 5 integers
◆ Only a few compares to find the first that

is non-zero
◆ Hardware instruction to find the first 1-bit
◆ Time depends on the number of priority

levels, not the number of processes
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■ Calculate

Quantum =







(140 − SP) × 20 if SP < 120
(140 − SP) × 5 if SP ≥ 120

where SP is the static priority

■ Higher priority process get longer quanta
■ Basic idea: important processes should run

longer
■ Other mechanisms used for quick interactive

response
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Static
Pri Niceness Quantum

Highest Static Pri 100 20 800 ms
High Static Pri 110 -10 600 ms
Normal 120 0 100 ms
Low Static Pri 130 +10 50 ms
Lowest Static Pri 139 +20 5 ms
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■ Dynamic priority is calculated from static
priority and average sleep time

■ When process wakes up, record how long it
was sleeping, up to some maximum value

■ When the process is running, decrease that
value each timer tick

■ Roughly speaking, the bonus is a number in
[0, 10] that measures what percentage of the
time the process was sleeping recently; 5 is
neutral, 10 helps priority by 5, 0 hurts priority
by 5

DP = max(100, min(SP − bonus + 5, 139))
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■ A process is interactive if

bonus − 5 ≥ S/4 − 28

■ Low-priority processes have a hard time
becoming interactive

■ A default priority process becomes interactive
when its sleep time is greater than 700 ms
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■ At every time tick, decrease the quantum of
the current running process

■ If the time goes to zero, the process is done
■ If the process is non-interactive, put it aside on

the expired list
■ If the process is interactive, put it at the end

of the current priority queue

■ If there’s nothing else at that priority, it will
run again immediately

■ Of course, by running so much is bonus will go
down, and so will its priority and its interative
status
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■ There are two sets of 140 queues, active and
expired

■ The system only runs processes from active

queues, and puts them on expired queues
when they use up their quanta

■ When a priority level of the active queue is
empty, the scheduler looks for the next-highest
priority queue

■ After running all of the active queues, the
active and expired queues are swapped

■ There are pointers to the current arrays; at the
end of a cycle, the pointers are switched
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struct runqueue {
struct prioarray *active;

struct prioarray *expired;

struct prioarray arrays[2];

};

struct prioarray {
int nr_active; /* # Runnable */

unsigned long bitmap[5];

struct list_head queue[140];

};
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struct prioarray *array = rq->active;

if (array->nr_active == 0) {
rq->active = rq->expired;

rq->expired = array;

}
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■ Why is it done this way?
■ It avoids the need for traditional aging

■ Why is aging bad?
■ It’s O(n) at each clock tick
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for(pp = proc; pp < proc+NPROC; pp++) {
if (pp->prio != MAX)

pp->prio++;

if (pp->prio > curproc->prio)

reschedule();

}

Every process is examined, quite frequently
(This code is taken almost verbatim from 6th
Edition Unix, circa 1976.)
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■ Processes are touched only when they start or
stop running

■ That’s when we recalculate priorities, bonuses,
quanta, and interactive status

■ There are no loops over all processes or even
over all runnableprocesses
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■ To rebalance, the kernel sometimes needs to
move processes from one runqueue to another

■ This is actually done by special kernel threads
■ Naturally, the runqueue must be locked before

this happens
■ The kernel always locks runqueues in order of

increasing address
■ Why? Deadlock prevention! (It is good for

something. . .
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■ Linux has soft real-time scheduling
■ Processes with priorities [0, 99] are real-time
■ All real-time processes are higher priority than

any conventional processes
■ Two real-time scheduling systems, FCFS and

round-robin
■ First-come, first-served: process is only

preempted for a higher-priority process; no
time quanta

■ Round-robin: real-time processes at a given
level take turns running for their time quantum
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■ Processes need to wait for events
■ Waiting is done by putting the process on a

wait queue
■ Wakeups can happen too soon; the process

must check its condition and perhaps go back
to sleep
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DECLARE_WAIT_QUEUE(wait, current);

/* Sleep on queue ’q’ */

add_wait_queue(q, &wait);

while (!condition) {
set_current_state(TASK_INTERRUPTIBLE);

if (signal_pending(current))

/* handle signal */

schedule();

}
set_current_state(TASK_RUNNING);

remove_wait_queue(q, &wait);
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■ You don’t wake a process, you wake a wait

queue

■ There may be multiple processes waiting for
the event, i.e., several processes trying to read
a single disk block

■ The condition may not, in fact, have been
satisfied

■ That’s why the sleep routine has a loop
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nice() Lower a process’ static priority
getpriority()/setpriority() Change priorities of

a process group
sched getscheduler()/sched setscheduler()

Set scheduling policy and parameters. (Many
more starting with sched ; use man -k to
learn their names.)
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scheduler tick() Called each timer tick to up-
date quanta

try to wakeup() Attempts to wake a process,
put in on a run queue, rebal-
ance loads, etc.

recalc task prio() update average sleep time an
dynamic priority

schedule() Pick the next process to run
rebalance tick() Check if load-banlancing is

needed
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■ Suppose we wanted to add a fair share
scheduler to Linux

■ What should be done?
■ Add a new scheduler type for

sched setscheduler()

■ Calculate process priority, interactivity, bonus,
etc., based on all processes owned by that user

■ How can that be done efficiently? What sorts
of new data structures are needed?
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■ Animated applications
■ Screen-savers
■ Time of day for file timestamps
■ Quanta!
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■ Time of day (especially as a service to
applications)

■ Interval timers — something should happen n
ms from now
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■ Real-Time Clock: tracks time and date, even if
the computer is off; can interrupt at a certain
rate or at a certain time. Use by Linux only at
boot time to get time of day

■ Time Stamp Counter: ticks once per CPU
clock; provides very accurate interval timing

■ Programmable Interval Timer: generates
periodic interrupts. On Linux, the rate, called
HZ, is usually 1000 Hz (100 Hz on slow CPUs)

■ A variety of special, less common (and less
used) timers
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■ Linux programs a timer to interrupt at a
certain rate

■ Each tick, a number of operations are carried
out

■ Three most important

◆ Keeping track of time
◆ Invoking dynamic timer routines
◆ Calling scheduler tick()

■ The system uses the best timer available
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■ Each timer tick, a variable called jiffies is
incremented

■ It is thus (roughly) the number of HZ since
system boot

■ A 32-bit counter incremented at 1000 Hz
wraps around in about 50 days

■ We need 64 bits — but there’s a problem
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■ A 64-bit value cannot be accessed atomically
on a 32-bit machine

■ A spin-lock is used to synchronize access to
jiffies 64; kernel routines call
get jiffies 64()

■ But we don’t want to have to increment two
variables each tick

■ Linker magic is used to make jiffies the
low-order 32 bits of jiffies 64

■ Ugly!
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■ The time of day is stored in xtime, which is a
struct timespec

■ It’s incremented once per tick
■ Again, a spin-lock is used to synchronize

access to it
■ The apparent tick rate can be adjusted

slightly, via the adjtimex() system call
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■ Two types of timers use by kernel routines
■ Dynamic timer — call some routine after a

particular interval
■ Delay loops — tight spin loops for very short

delays
■ User-mode interval timers are similar to kernel

dynamic timers
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■ Specify an interval, a subroutine to call, and a
parameter to pass to that subroutine

■ Parameter used to differentiate different
instantiations of the same timer — if you have
4 Ethernet cards creating dynamic timers, the
parameter is typically the address of the
per-card data structure

■ Timers can be cancelled; there is (as usual) a
delicate synchronization dance on
multiprocessors. See the text for details
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■ Spin in a tight loop for a short time —
microseconds or nanoseconds

■ Nothing else can use that CPU during that
time, except via interrupt

■ Used only when the overhead of creating a
dynamic timer is too great for a very short
delay
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■ time() and gettimeofday()

■ adjtimex() — tweaks apparent clock rate
(even the best crystals drift; see the Remote

Physical Device Fingerprinting paper from my
COMS E6184 class

■ setitimer() and alarm() — interval timers
for applications
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