
Linux Scheduler

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

1 / 40



Descending to Reality. . .

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

2 / 40

■ The Linux scheduler tries to be very efficient
■ To do that, it uses some complex data

structures
■ Some of what it does actually contradicts the

schemes we’ve been discussing. . .



Philosophies

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

3 / 40

■ Use large quanta for important processes
■ Modify quanta based on CPU use
■ Bind processes to CPUs
■ Do everything in O(1) time



Processor Scheduling

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

4 / 40

■ Have a separate run queue for each processor
■ Each processor only selects processes from its

own queue to run
■ Yes, it’s possible for one processor to be idle

while others have jobs waiting in their run
queues

■ Periodically, the queues are rebalanced: if one
processor’s run queue is too long, some
processes are moved from it to another
processor’s queue



Processor Affinity

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

5 / 40

■ Each process has a bitmask saying what CPUs
it can run on

■ Normally, of course, all CPUs are listed
■ Processes can change the mask
■ The mask is inherited by child processes (and

threads), thus tending to keep them on the
same CPU

■ Rebalancing does not override affinity



Basic Scheduling Algorithm

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

6 / 40

■ Find the highest-priority queue with a runnable
process

■ Find the first process on that queue
■ Calculate its quantum size
■ Let it run
■ When its time is up, put it on the expired list
■ Repeat



The Run Queue

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

7 / 40

■ 140 separate queues, one for each priority level
■ Actually, that number can be changed at a

given site
■ Actually, two sets, active and expired

■ Priorities 0-99 for real-time processes
■ Priorities 100-139 for normal processes; value

set via nice() system call



The Highest Priority Process

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

8 / 40

■ There is a bit map indicating which queues
have processes that are ready to run

■ Find the first bit that’s set:

◆ 140 queues ⇒ 5 integers
◆ Only a few compares to find the first that

is non-zero
◆ Hardware instruction to find the first 1-bit
◆ Time depends on the number of priority

levels, not the number of processes



Calculating Timeslices

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

9 / 40

■ Calculate

Quantum =







(140 − SP) × 20 if SP < 120
(140 − SP) × 5 if SP ≥ 120

where SP is the static priority

■ Higher priority process get longer quanta
■ Basic idea: important processes should run

longer
■ Other mechanisms used for quick interactive

response



Typical Quanta

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

10 / 40

Static
Pri Niceness Quantum

Highest Static Pri 100 20 800 ms
High Static Pri 110 -10 600 ms
Normal 120 0 100 ms
Low Static Pri 130 +10 50 ms
Lowest Static Pri 139 +20 5 ms



Dynamic Priority

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

11 / 40

■ Dynamic priority is calculated from static
priority and average sleep time

■ When process wakes up, record how long it
was sleeping, up to some maximum value

■ When the process is running, decrease that
value each timer tick

■ Roughly speaking, the bonus is a number in
[0, 10] that measures what percentage of the
time the process was sleeping recently; 5 is
neutral, 10 helps priority by 5, 0 hurts priority
by 5

DP = max(100, min(SP − bonus + 5, 139))



Interactive Processes

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

12 / 40

■ A process is interactive if

bonus − 5 ≥ S/4 − 28

■ Low-priority processes have a hard time
becoming interactive

■ A default priority process becomes interactive
when its sleep time is greater than 700 ms



Using Quanta

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

13 / 40

■ At every time tick, decrease the quantum of
the current running process

■ If the time goes to zero, the process is done
■ If the process is non-interactive, put it aside on

the expired list
■ If the process is interactive, put it at the end

of the current priority queue

■ If there’s nothing else at that priority, it will
run again immediately

■ Of course, by running so much is bonus will go
down, and so will its priority and its interative
status



Avoiding Indefinite Overtaking

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

14 / 40

■ There are two sets of 140 queues, active and
expired

■ The system only runs processes from active

queues, and puts them on expired queues
when they use up their quanta

■ When a priority level of the active queue is
empty, the scheduler looks for the next-highest
priority queue

■ After running all of the active queues, the
active and expired queues are swapped

■ There are pointers to the current arrays; at the
end of a cycle, the pointers are switched



The Priority Arrays

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

15 / 40

struct runqueue {
struct prioarray *active;

struct prioarray *expired;

struct prioarray arrays[2];

};

struct prioarray {
int nr_active; /* # Runnable */

unsigned long bitmap[5];

struct list_head queue[140];

};



Swapping Arrays

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

16 / 40

struct prioarray *array = rq->active;

if (array->nr_active == 0) {
rq->active = rq->expired;

rq->expired = array;

}



Why Two Arrays?

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

17 / 40

■ Why is it done this way?
■ It avoids the need for traditional aging

■ Why is aging bad?
■ It’s O(n) at each clock tick



The Traditional Algorithm

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

18 / 40

for(pp = proc; pp < proc+NPROC; pp++) {
if (pp->prio != MAX)

pp->prio++;

if (pp->prio > curproc->prio)

reschedule();

}

Every process is examined, quite frequently
(This code is taken almost verbatim from 6th
Edition Unix, circa 1976.)



Linux is More Efficient

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

19 / 40

■ Processes are touched only when they start or
stop running

■ That’s when we recalculate priorities, bonuses,
quanta, and interactive status

■ There are no loops over all processes or even
over all runnableprocesses



Locking Runqueues

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

20 / 40

■ To rebalance, the kernel sometimes needs to
move processes from one runqueue to another

■ This is actually done by special kernel threads
■ Naturally, the runqueue must be locked before

this happens
■ The kernel always locks runqueues in order of

increasing address
■ Why? Deadlock prevention! (It is good for

something. . .



Real-Time Scheduling

Linux Scheduler
Descending to
Reality. . .

Philosophies

Processor
Scheduling

Processor Affinity

Basic Scheduling
Algorithm

The Run Queue

The Highest Priority
Process
Calculating
Timeslices

Typical Quanta

Dynamic Priority

Interactive Processes

Using Quanta

Avoiding Indefinite
Overtaking

The Priority Arrays

Swapping Arrays

Why Two Arrays?

The Traditional
Algorithm

Linux is More
Efficient

Locking Runqueues

Real-Time
Scheduling

Sleeping and Waking

Timers

21 / 40

■ Linux has soft real-time scheduling
■ Processes with priorities [0, 99] are real-time
■ All real-time processes are higher priority than

any conventional processes
■ Two real-time scheduling systems, FCFS and

round-robin
■ First-come, first-served: process is only

preempted for a higher-priority process; no
time quanta

■ Round-robin: real-time processes at a given
level take turns running for their time quantum



Sleeping and Waking

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

22 / 40



Sleeping and Waking

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

23 / 40

■ Processes need to wait for events
■ Waiting is done by putting the process on a

wait queue
■ Wakeups can happen too soon; the process

must check its condition and perhaps go back
to sleep



Sleeping

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

24 / 40

DECLARE_WAIT_QUEUE(wait, current);

/* Sleep on queue ’q’ */

add_wait_queue(q, &wait);

while (!condition) {
set_current_state(TASK_INTERRUPTIBLE);

if (signal_pending(current))

/* handle signal */

schedule();

}
set_current_state(TASK_RUNNING);

remove_wait_queue(q, &wait);



Waking Up a Process

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

25 / 40

■ You don’t wake a process, you wake a wait

queue

■ There may be multiple processes waiting for
the event, i.e., several processes trying to read
a single disk block

■ The condition may not, in fact, have been
satisfied

■ That’s why the sleep routine has a loop



Scheduler-Related System Calls

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

26 / 40

nice() Lower a process’ static priority
getpriority()/setpriority() Change priorities of

a process group
sched getscheduler()/sched setscheduler()

Set scheduling policy and parameters. (Many
more starting with sched ; use man -k to
learn their names.)



Major Kernel Functions

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

27 / 40

scheduler tick() Called each timer tick to up-
date quanta

try to wakeup() Attempts to wake a process,
put in on a run queue, rebal-
ance loads, etc.

recalc task prio() update average sleep time an
dynamic priority

schedule() Pick the next process to run
rebalance tick() Check if load-banlancing is

needed



Fair Share Scheduling

Linux Scheduler

Sleeping and Waking

Sleeping and Waking

Sleeping

Waking Up a
Process
Scheduler-Related
System Calls

Major Kernel
Functions
Fair Share
Scheduling

Timers

28 / 40

■ Suppose we wanted to add a fair share
scheduler to Linux

■ What should be done?
■ Add a new scheduler type for

sched setscheduler()

■ Calculate process priority, interactivity, bonus,
etc., based on all processes owned by that user

■ How can that be done efficiently? What sorts
of new data structures are needed?



Timers

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

29 / 40



Why Does the Kernel Need Timers?

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

30 / 40

■ Animated applications
■ Screen-savers
■ Time of day for file timestamps
■ Quanta!



Two Basic Functions

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

31 / 40

■ Time of day (especially as a service to
applications)

■ Interval timers — something should happen n
ms from now



Timer Types

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

32 / 40

■ Real-Time Clock: tracks time and date, even if
the computer is off; can interrupt at a certain
rate or at a certain time. Use by Linux only at
boot time to get time of day

■ Time Stamp Counter: ticks once per CPU
clock; provides very accurate interval timing

■ Programmable Interval Timer: generates
periodic interrupts. On Linux, the rate, called
HZ, is usually 1000 Hz (100 Hz on slow CPUs)

■ A variety of special, less common (and less
used) timers



Timer Ticks

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

33 / 40

■ Linux programs a timer to interrupt at a
certain rate

■ Each tick, a number of operations are carried
out

■ Three most important

◆ Keeping track of time
◆ Invoking dynamic timer routines
◆ Calling scheduler tick()

■ The system uses the best timer available



Jiffies

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

34 / 40

■ Each timer tick, a variable called jiffies is
incremented

■ It is thus (roughly) the number of HZ since
system boot

■ A 32-bit counter incremented at 1000 Hz
wraps around in about 50 days

■ We need 64 bits — but there’s a problem



Potent and Evil Magic

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

35 / 40

■ A 64-bit value cannot be accessed atomically
on a 32-bit machine

■ A spin-lock is used to synchronize access to
jiffies 64; kernel routines call
get jiffies 64()

■ But we don’t want to have to increment two
variables each tick

■ Linker magic is used to make jiffies the
low-order 32 bits of jiffies 64

■ Ugly!



Time of Day

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

36 / 40

■ The time of day is stored in xtime, which is a
struct timespec

■ It’s incremented once per tick
■ Again, a spin-lock is used to synchronize

access to it
■ The apparent tick rate can be adjusted

slightly, via the adjtimex() system call



Kernel Timers

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

37 / 40

■ Two types of timers use by kernel routines
■ Dynamic timer — call some routine after a

particular interval
■ Delay loops — tight spin loops for very short

delays
■ User-mode interval timers are similar to kernel

dynamic timers



Dynamic Timers

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

38 / 40

■ Specify an interval, a subroutine to call, and a
parameter to pass to that subroutine

■ Parameter used to differentiate different
instantiations of the same timer — if you have
4 Ethernet cards creating dynamic timers, the
parameter is typically the address of the
per-card data structure

■ Timers can be cancelled; there is (as usual) a
delicate synchronization dance on
multiprocessors. See the text for details



Delay Functions

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

39 / 40

■ Spin in a tight loop for a short time —
microseconds or nanoseconds

■ Nothing else can use that CPU during that
time, except via interrupt

■ Used only when the overhead of creating a
dynamic timer is too great for a very short
delay



System Calls

Linux Scheduler

Sleeping and Waking

Timers
Why Does the
Kernel Need
Timers?

Two Basic Functions

Timer Types

Timer Ticks

Jiffies
Potent and Evil
Magic

Time of Day

Kernel Timers

Dynamic Timers

Delay Functions

System Calls

40 / 40

■ time() and gettimeofday()

■ adjtimex() — tweaks apparent clock rate
(even the best crystals drift; see the Remote

Physical Device Fingerprinting paper from my
COMS E6184 class

■ setitimer() and alarm() — interval timers
for applications


	Linux Scheduler
	Descending to Reality…
	Philosophies
	Processor Scheduling
	Processor Affinity
	Basic Scheduling Algorithm
	The Run Queue
	The Highest Priority Process
	Calculating Timeslices
	Typical Quanta
	Dynamic Priority
	Interactive Processes
	Using Quanta
	Avoiding Indefinite Overtaking
	The Priority Arrays
	Swapping Arrays
	Why Two Arrays?
	The Traditional Algorithm
	Linux is More Efficient
	Locking Runqueues
	Real-Time Scheduling

	Sleeping and Waking
	Sleeping and Waking
	Sleeping
	Waking Up a Process
	Scheduler-Related System Calls
	Major Kernel Functions
	Fair Share Scheduling

	Timers
	Why Does the Kernel Need Timers?
	Two Basic Functions
	Timer Types
	Timer Ticks
	Jiffies
	Potent and Evil Magic
	Time of Day
	Kernel Timers
	Dynamic Timers
	Delay Functions
	System Calls


