
Interactive Scheduling 1 / 39

Round-Robin

■ Take turns
■ Give each process a time quantum

■ When the time is up, move the current process to the end of the queue

1 / 39

Quantum Length

■ The shorter the quantum, the more responsive the system
■ However, process switching is expensive (saving and reloading registers,

switching virtual memory maps, flushing the cache, bookkeeping, etc.)
■ Suppose the compute quantum is 4 msec and process switches take 1 msec.

That’s 20% overhead — too much
■ Suppose we have 100 msec quanta
■ If the run queue ever gets long, even cheap requests will take too long
■ Need a reasonable compromise: 20-50 msec?

2 / 39

1



Priority Scheduling

■ Not all processes are equally important
■ Assign them priority levels

■ Simplest version: always run the highest-priority process
■ Not a good idea — what if it’s CPU bound?

3 / 39

Priority Adjustments

■ Periodically reduce the priority of the running process
■ Eventually, it falls below the priority of the next process
■ Alternative: increase the priority of non-running processes
■ Called process aging

■ Or do both

4 / 39

2



Dynamic Priority Adjustment

■ Adjust process priority according to its recent history
■ Example: increase priority of non-running processes; decrease priority of

running processes, as above
■ Boost priority of I/O-bound processes:

◆ If process used 1/f of its last quantum, boost its priority proportional to f

■ Use priority classes: have separate queues for each priority level, and run each
queue round-robin; switch to lower-priority queue when this one is empty

5 / 39

Run Queues

■ Each run queue is a linked list
■ To raise or lower a process’ priority, move it to a different list
■ Two schemes for priority aging:

◆ Not many processes: have a fine-grained counter for each process
incremented at a clock interrupt; at some limit, increase priority

◆ Lots of processes and queues: periodically, move each list to the next level
up

6 / 39

3



Varying Quanta

■ Many processes need just a little bit of CPU time
■ Since process switches can be expensive, don’t do them too often
■ Solution to both problems: give lower priority queues longer quanta
■ Top priority queue: one quantum
■ Second queue: two quanta CPU allocation
■ Third queue: four quanta, etc.
■ Alternate solution: “short” (initial) quantum at high priority and “long”

quanta at low priority thereafter

7 / 39

Helping Interactive Processes

■ Look for signs of user input
■ When they occur, give the process a very high priority
■ Example: on CTSS, when a user typed a carriage return, the process got top

priority
■ Harder to do today — what’s “interactive” on a networked process? For a

mouse movement, which process is credited?

8 / 39

4



Gaming the System

■ On time-sharing systems, watch for attempts to fake out the scheduler
■ CTSS example: typing spurious carriage returns
■ XDS 940 example: do really quick I/O operation

◆ Solution: save remaining CPU quantum; when process restarts, use
remainder instead of full allocation

■ Not applicable on single-user machines — you’re only hurting yourself
■ Instead, watch for inadvertent influences on the wrong process

9 / 39

Process Priorities

■ What processes should have higher priorities?
■ Administrative issues
■ System performance

◆ Kernel processes (up to a point)
◆ Interactive services processes (i.e., X server)

■ Users can lower priority of their own processes, sometimes to avoid competing
with themselves

10 / 39

5



Unix Priorities

■ Tradition: lower numbers indicate higher priorities
■ “Nice” value is a user-specified modifier
■ A nice value of +20 specifies a very low priority process
■ Only root can set negative niceness
■ Default is 0
■ Note: this is an API; internal metric can be different

11 / 39

Some Linux Priorities

UID PRI NI SZ CMD

root 76 0 606 init

root 94 19 0 [ksoftirqd/0]

root 75 0 0 [khubd]

root 83 0 0 [scsi_eh_1]

root 79 0 6285 ypbind

root 75 0 1242 /usr/sbin/sshd

smb 76 0 1007 ps

The PRI value factors in the niceness and the process’ dynamic priority

12 / 39

6



Shortest Process Next

■ Can we emulate batch systems’ shortest first algorithm?
■ It’s hard, because we don’t have good estimates
■ Instead, use historical data for a moving, decaying, average
■ Let first time = T0; second is T1

T2 = αT0 + (1 − α)T1

T3 = α2T0 + α(1 − α)T1 + (1 − α)T2

T4 = α3T0 + α2(1 − α)T1 + α(1 − α)T2 +

(1 − α)T3

. . .

13 / 39

Whose History?

■ Do we measure command history?
■ Hard; requires a lot of kernel state
■ Besides, command time can vary a lot depending on input data
■ Better to measure user (or terminal) behavior

14 / 39

7



Guaranteed Scheduling

■ For n users or process on a system, give each 1/n of the CPU
■ Measure actual CPU usage
■ Calculate process’ CPU time entitlement
■ Look at the ratio of the two: 0.5 means it’s had only half the CPU it’s entitled

to, so it gets priority over a process with a ratio of 2.0

15 / 39

Lottery Scheduling

■ Give each process lottery tickets

■ Higher priority processes get more tickets; lower priority process get fewer
■ At scheduling time, pick a random ticket
■ The process holding that ticket gets to run
■ Note: tickets can be exchanged between processes, such as between client and

server

16 / 39

8



Fair-Share Scheduling

■ In some systems, processes don’t compete, users do
■ We don’t want to encourage forking just to get a larger share of the CPU
■ Solution: make decisions based on user CPU consumption instead of process

CPU consumption
■ Priorities, etc., can still apply

17 / 39

Real-Time Scheduling 18 / 39

Real-Time Systems

■ Must respond to actual clock-on-the-wall time
■ A late process may be a useless process
■ Two types, hard and soft
■ Hard real time systems have deadlines that must be met; used for process

control, avionics, etc.
■ Soft real time tries its best, but can miss occasional deadlines
■ Both depend on knowledge of processing time per request

18 / 39

9



Periodic Events

■ Many real-time events occur with a regular frequency
■ Suppose there are m events, withe event i needing Ci seconds of CPU and

occurring every Pi seconds
■ System works if and only if

m∑

i=1

Ci

Pi

≤ 1

■ Watch out for process switch overhead. . .

19 / 39

Aperiodic Events

■ Other events don’t happen on a regular schedule
■ The basic constraint is the same: total load must be less than total capacity
■ Engineering such systems is harder

20 / 39

10



Mixing Real-Time and Non-Realtime Processes

■ Some systms have both kinds of processes (and schedulers)
■ General strategy: give real-time processes priority over all conventional

processes
■ Schedule them round-robin or possibly even nonpreemptively

21 / 39

Multiple Real-Time Processes

■ A runs every 30 msec; each time it needs 10 msec of CPU time
■ B runs 25 times/sec for 15 msec
■ C runs 20 times/sec for 5 msec
■ For our equation, A uses 10/30 of the CPU, B uses 15/40, and C uses 5/50;

that’s about 81%

22 / 39

11



Diagram

C2

A4A3A2

C1

A1

B3B2B1

0 10 20 30 50 60 80 9040 70

A1 must finish before A2 starts, B1 before B2,. . .

23 / 39

12



Other Issues

■ Some real-time systems permit preemption; some do not
■ Desirability depends on system type (text’s discussion is for multimedia

system, which are usually preemptible
■ May have aperiodic processes in the mix
■ Static or dynamic scheduling

24 / 39

13


	Interactive Scheduling
	Round-Robin
	Quantum Length
	Priority Scheduling
	Priority Adjustments
	Dynamic Priority Adjustment
	Run Queues
	Varying Quanta
	Helping Interactive Processes
	Gaming the System
	Process Priorities
	Unix Priorities
	Some Linux Priorities
	Shortest Process Next
	Whose History?
	Guaranteed Scheduling
	Lottery Scheduling
	Fair-Share Scheduling

	Real-Time Scheduling
	Real-Time Systems
	Periodic Events
	Aperiodic Events
	Mixing Real-Time and Non-Realtime Processes
	Multiple Real-Time Processes
	Diagram
	Other Issues
	Rate Monotonic Scheduling
	Algorithm
	RMS
	Earliest Deadline First
	EDF
	RMS Doesn't Always Work
	RMS Failure
	Why Did it Fail?
	EDF Succeeds
	Gantt Charts

	Other Issues
	How Do We Measure CPU Time?
	Statistical Time
	I/O and Memory
	Scheduler Algorithms
	Summary


