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Round-Robin

■ Take turns
■ Give each process a time quantum

■ When the time is up, move the current process to the end of the queue
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Quantum Length

■ The shorter the quantum, the more responsive the system
■ However, process switching is expensive (saving and reloading registers,

switching virtual memory maps, flushing the cache, bookkeeping, etc.)
■ Suppose the compute quantum is 4 msec and process switches take 1 msec.

That’s 20% overhead — too much
■ Suppose we have 100 msec quanta
■ If the run queue ever gets long, even cheap requests will take too long
■ Need a reasonable compromise: 20-50 msec?

2 / 39

1



Priority Scheduling

■ Not all processes are equally important
■ Assign them priority levels

■ Simplest version: always run the highest-priority process
■ Not a good idea — what if it’s CPU bound?
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Priority Adjustments

■ Periodically reduce the priority of the running process
■ Eventually, it falls below the priority of the next process
■ Alternative: increase the priority of non-running processes
■ Called process aging

■ Or do both
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Dynamic Priority Adjustment

■ Adjust process priority according to its recent history
■ Example: increase priority of non-running processes; decrease priority of

running processes, as above
■ Boost priority of I/O-bound processes:

◆ If process used 1/f of its last quantum, boost its priority proportional to f

■ Use priority classes: have separate queues for each priority level, and run each
queue round-robin; switch to lower-priority queue when this one is empty
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Run Queues

■ Each run queue is a linked list
■ To raise or lower a process’ priority, move it to a different list
■ Two schemes for priority aging:

◆ Not many processes: have a fine-grained counter for each process
incremented at a clock interrupt; at some limit, increase priority

◆ Lots of processes and queues: periodically, move each list to the next level
up
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Varying Quanta

■ Many processes need just a little bit of CPU time
■ Since process switches can be expensive, don’t do them too often
■ Solution to both problems: give lower priority queues longer quanta
■ Top priority queue: one quantum
■ Second queue: two quanta CPU allocation
■ Third queue: four quanta, etc.
■ Alternate solution: “short” (initial) quantum at high priority and “long”

quanta at low priority thereafter

7 / 39

Helping Interactive Processes

■ Look for signs of user input
■ When they occur, give the process a very high priority
■ Example: on CTSS, when a user typed a carriage return, the process got top

priority
■ Harder to do today — what’s “interactive” on a networked process? For a

mouse movement, which process is credited?
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Gaming the System

■ On time-sharing systems, watch for attempts to fake out the scheduler
■ CTSS example: typing spurious carriage returns
■ XDS 940 example: do really quick I/O operation

◆ Solution: save remaining CPU quantum; when process restarts, use
remainder instead of full allocation

■ Not applicable on single-user machines — you’re only hurting yourself
■ Instead, watch for inadvertent influences on the wrong process
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Process Priorities

■ What processes should have higher priorities?
■ Administrative issues
■ System performance

◆ Kernel processes (up to a point)
◆ Interactive services processes (i.e., X server)

■ Users can lower priority of their own processes, sometimes to avoid competing
with themselves
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Unix Priorities

■ Tradition: lower numbers indicate higher priorities
■ “Nice” value is a user-specified modifier
■ A nice value of +20 specifies a very low priority process
■ Only root can set negative niceness
■ Default is 0
■ Note: this is an API; internal metric can be different
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Some Linux Priorities

UID PRI NI SZ CMD

root 76 0 606 init

root 94 19 0 [ksoftirqd/0]

root 75 0 0 [khubd]

root 83 0 0 [scsi_eh_1]

root 79 0 6285 ypbind

root 75 0 1242 /usr/sbin/sshd

smb 76 0 1007 ps

The PRI value factors in the niceness and the process’ dynamic priority
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Shortest Process Next

■ Can we emulate batch systems’ shortest first algorithm?
■ It’s hard, because we don’t have good estimates
■ Instead, use historical data for a moving, decaying, average
■ Let first time = T0; second is T1

T2 = αT0 + (1 − α)T1

T3 = α2T0 + α(1 − α)T1 + (1 − α)T2

T4 = α3T0 + α2(1 − α)T1 + α(1 − α)T2 +

(1 − α)T3

. . .
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Whose History?

■ Do we measure command history?
■ Hard; requires a lot of kernel state
■ Besides, command time can vary a lot depending on input data
■ Better to measure user (or terminal) behavior
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Guaranteed Scheduling

■ For n users or process on a system, give each 1/n of the CPU
■ Measure actual CPU usage
■ Calculate process’ CPU time entitlement
■ Look at the ratio of the two: 0.5 means it’s had only half the CPU it’s entitled

to, so it gets priority over a process with a ratio of 2.0
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Lottery Scheduling

■ Give each process lottery tickets

■ Higher priority processes get more tickets; lower priority process get fewer
■ At scheduling time, pick a random ticket
■ The process holding that ticket gets to run
■ Note: tickets can be exchanged between processes, such as between client and

server
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Fair-Share Scheduling

■ In some systems, processes don’t compete, users do
■ We don’t want to encourage forking just to get a larger share of the CPU
■ Solution: make decisions based on user CPU consumption instead of process

CPU consumption
■ Priorities, etc., can still apply
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Real-Time Scheduling 18 / 39

Real-Time Systems

■ Must respond to actual clock-on-the-wall time
■ A late process may be a useless process
■ Two types, hard and soft
■ Hard real time systems have deadlines that must be met; used for process

control, avionics, etc.
■ Soft real time tries its best, but can miss occasional deadlines
■ Both depend on knowledge of processing time per request
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Periodic Events

■ Many real-time events occur with a regular frequency
■ Suppose there are m events, withe event i needing Ci seconds of CPU and

occurring every Pi seconds
■ System works if and only if

m∑

i=1

Ci

Pi

≤ 1

■ Watch out for process switch overhead. . .
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Aperiodic Events

■ Other events don’t happen on a regular schedule
■ The basic constraint is the same: total load must be less than total capacity
■ Engineering such systems is harder
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Mixing Real-Time and Non-Realtime Processes

■ Some systms have both kinds of processes (and schedulers)
■ General strategy: give real-time processes priority over all conventional

processes
■ Schedule them round-robin or possibly even nonpreemptively
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Multiple Real-Time Processes

■ A runs every 30 msec; each time it needs 10 msec of CPU time
■ B runs 25 times/sec for 15 msec
■ C runs 20 times/sec for 5 msec
■ For our equation, A uses 10/30 of the CPU, B uses 15/40, and C uses 5/50;

that’s about 81%
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Diagram

C2

A4A3A2

C1
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B3B2B1
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A1 must finish before A2 starts, B1 before B2,. . .
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Other Issues

■ Some real-time systems permit preemption; some do not
■ Desirability depends on system type (text’s discussion is for multimedia

system, which are usually preemptible
■ May have aperiodic processes in the mix
■ Static or dynamic scheduling
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