
Deadlock Avoidance 1 / 38

Deadlock Avoidance

■ If we can detect deadlocks, can we avoid them?
■ Yes, but. . .
■ We can avoid deadlocks if certain information is available in advance

1 / 38

Process Trajectories

Y4

Y3

Process B

Process A

Printer

Plotter

P Q

R

S

T

X1 X2 X3 X4

Y1

Y2

A needs the printer from X1 to X3; it needs the plotter from X2 to X4.
B needs the plotter from Y1 to Y3; it needs the printer from Y2 to Y4.

2 / 38

1

Problems

■ Warning sign: A and B are asking for resources in a different order
■ Green region: both A and B have the printer — impossible
■ Yellow region: both have the plotter
■ Blue — both have both devices. . .
■ The colored regions represent impossible states and cannot be entered

3 / 38

Avoiding Deadlock

■ If the system ever enters the red-bordered state, it will deadlock
■ At time t, cannot schedule B
■ If we do, system will enter deadlock state
■ Must run A until X4

4 / 38

2

Alternate Process Trajectory

Y4

Process B

Process A

Printer

Plotter

P Q

R

S

T

X1 X2 X3 X4

Y1

Y2

Y3

If A and B ask for the plotter first, there’s no danger. B will clearly block if it’s
scheduled, so A will proceed. The dangerous state was where a process entered a
clear box that would deadlock.

5 / 38

Safe and Unsafe States

■ A state is safe if not deadlocked and there is a scheduling order in which all
processes can complete, even if they all ask for all of their resources at once

■ An unsafe state is not deadlocked, but no such scheduling order exists
■ It may even work, if a process releases resources at the right time

6 / 38

3

The Banker’s Algorithm (Dijkstra, 1965)

■ Assume we’re dealing with a single resource — perhaps dollars
■ Every customer has a “line of credit” — a maximum possible resource

allocation”

■ The banker only has a certain amount of cash on hand
■ Not everyone will need all of their credit at once
■ Solution: only grant requests if they leave us in a safe state

7 / 38

Example

Has Max
A 0 6
B 0 5
C 0 4
D 0 7

Free: 10

Has Max
A 1 6
B 1 5
C 2 4
D 4 7

Free: 2

Has Max
A 1 6
B 2 5
C 2 4
D 4 7

Free: 1
The first state is safe; we can grant the requests sequentially. The second state is
safe; we can grant C’s maximum request, let it run to completion, and then have
$4 to give to B or D.
If, after the second state, we give $1 to B, we enter an unsafe state — there isn’t
enough money left to satisfy all possible requests.

8 / 38

4

The Banker’s Algorithm for Multiple Resources

■ Build matrices C (currently assigned) and R (and still needed), just as we
used for deadlock detection

■ Build vectors E (existing resources) and A (available), again as before
■ To see if a state is safe:

1. Find a row R whose unmet needs are ≤ A
2. Mark that row; add its resources to A
3. Repeat until either all rows are marked, in which case the state is safe, or

some are unmarked, in which case it’s unsafe

■ Run this algorithm any time a resource request is made

9 / 38

Why Isn’t This Useful?

■ Every process must state its resource requirements at startup
■ This is rarely possible today
■ Processes come and go
■ Resources vanish as hardware breaks
■ Not really used these days. . .

10 / 38

5

Example: File Binding Time

■ Old mainframes: all file name binding is done immediately prior to execution.
Also makes it easy to move files around

■ Classic Unix: file names on command line (but not clearly identifiable as such)
or compiled-in to commands. Occasional overrides via environment variables or
options.

■ GUIs: many files selected via menus

Early versus late binding is a major issuse in system design. Both choices here
have their advantages and disadvantages

11 / 38

Deadlock Prevention 12 / 38

Preventing Deadlocks

■ Practically speaking, we can’t avoid deadlocks
■ Can we prevent them in the real world?
■ Let’s go back to the four conditions:

1. Mutual exclusion
2. Hold and Wait
3. No preemption
4. Circular wait

12 / 38

6

Attacking Mutual Exclusion

■ Much less of an issue today — fewer single-user resources
■ Many of the existing ones are dedicated to single machines used by single

individuals, i.e., CD drives
■ Printers are generally spooled

⇒ No contention; only the printer daemon requests it

■ Not a general solution, but useful nevertheless

13 / 38

Attacking Holding and Wait

■ Could require processes to state their requirements up front
■ Still done sometimes in the mainframe world
■ Of course, if we could do that, we could use the Banker’s Algorithm

14 / 38

7

A Variant is Useful

■ Before requesting a resource, release all currently-held resources
■ Request all new ones at once
■ Doesn’t work if some resources must be held

15 / 38

Attacking Circular Wait

■ Number each possible resource:

1. Scanner
2. Printer
3. Tape drive
4. . . .

■ Resources must be requested in numerical order
■ Can’t deadlock — prevents the out-of-order scenario we saw earlier
■ Used on old mainframes
■ Can combine this with release-and-rerequest

16 / 38

8

Mainframe Resources

■ Wait until enough tape drives are available
■ Wait until memory region is available
■ Wait for all disk files to be free

Order based on typical wait time — disk files freed up quickly, while tape drives
waited for operators to find and mount tape reels

17 / 38

Two-Phase Locking

■ Frequently used in databases
■ Processes need to lock several records then update them all
■ Phase 1: try locking each record, one at a time
■ On failure, release them all and restart
■ When they’re all locked, do the updates and then the release
■ Effectively the same as “request everything up front”

18 / 38

9

What’s Really Done About Deadlocks?

■ In the OS, nothing. . .
■ Overprovision some resources, such as process slots
■ But — still very important in some applications, notably databases

19 / 38

What About Linux?

■ No deadlock prevention or detection for applications or threads
■ The kernel does care about deadlocks for itself.

/* We can’t just spew out the rules

* here because we might fill the

* available socket buffer space and

* deadlock waiting for auditctl to

* read from it... which isn’t ever

* going to happen if we’re actually

* running in the context of auditctl

* trying to _send_ the stuff */

20 / 38

10

Scheduling 21 / 38

Scheduling

■ Suppose several processes are runnable?
■ Which one is run next?
■ Many different ways to make this decision

21 / 38

Environments

■ Old batch systems didn’t have a scheduler; they just read whatever was next
on the input tape

■ Actually, they did have a scheduler: the person who loaded the card decks
onto the tape

■ Hybrid batch/time-sharing systems tend to give priority to short timesharing
requests

■ Still a policy today: must give priority to interactive requests

22 / 38

11

Process Behavior

■ Processes alternate CPU use with I/O requests
■ I/O requests frequently block, either waiting for input or when too much has

been written and no buffer space is available
■ CPU-bound processes think more than they read or write
■ I/O-bound processes do lots of I/O; it’s (usually) not that the I/O operations

are so time-consuming
■ Absolute speed of CPU and I/O devices is irrelevant; what matters is the ratio

■ CPUs have been getting much faster relative to disks

23 / 38

When to Make Scheduling Decisions

■ After a fork — run the parent or child?
■ On process exit
■ When a process blocks
■ When I/O completes
■ Sometimes, after timer interrupts

24 / 38

12

Preemptive vs. Nonpreemptive Schedulers

■ Nonpreemptive scheduler: lets a process run as long as it wants
■ Only switches when it blocks
■ Preemptive: switches after a time quantum

25 / 38

Categories of Scheduling Algorithms

■ Batch — responsiveness isn’t important; preemption moderately important
■ Interactive — must satisfy a human; preemption important
■ Real-time — often nonpreemptive

26 / 38

13

Goals

■ Fairness — give each process its share of the CPU
■ Policy and enforcement — give preference to work that is administratively

favored; prevent subversion of OS scheduling policy
■ Balance — keep all parts of the system busy

27 / 38

Goals: Batch Systems

■ Throughput — maximize jobs/hour
■ Turnaround time — return jobs quickly. Often want to finish short jobs very

quickly
■ CPU utilization

28 / 38

14

Interactive Systems

■ Response time — respond quickly to user requests
■ Meet user expectations — psychological

◆ Users have a sense of “cheap” and “expensive” requests
◆ Users are happier if “cheap” requests finish quickly
◆ “Cheap” and “expensive” don’t always correspond to reality!

29 / 38

Real-Time Systems

■ Meet deadlines — avoid losing data (or worse!)
■ Predictability — users must know when their requests will finish
■ Requires careful engineering to match priorities to actual completion times and

available resources

30 / 38

15

Batch Schedulers 31 / 38

Batch Schedulers

■ First-come, first-served
■ Shortest first
■ Shortest remaining time first
■ Three-level scheduler

31 / 38

First-Come, First-Served

■ Run the first process on the run queue
■ Never preempt based on timer
■ Seems simple; just like waiting in line
■ Not very fair

32 / 38

16

First-Come, First-Served

■ Imagine a CPU-bound process A: thinks for 1 second, then reads 1 disk block
■ There’s also an I/O-bound process B that needs to read 1000 blocks
■ A runs for 1 second, then issues an I/O request
■ B runs for almost no time, then issues an I/O request
■ A then runs for another second
■ It takes 1000 seconds for B to finish

33 / 38

Shortest First

■ Suppose you know the time requirements of each job
■ A needs 8 seconds, B needs 4, C needs 4, D needs 4
■ Run B, C, D, A
■ Nonpreemptive
■ Provably fair:

◆ Suppose four jobs have runtimes of a, b, c, and d
◆ First finishes at time a, second at a + b, etc
◆ Mean turnaround is (4a + 3b + 2c + d)/4
◆ d contributes less to the mean

34 / 38

17

Optimality Requires Simultaneous Availability

■ Jobs don’t all arrive at the same time
■ Can’t make optimal scheduling decision without complete knowledge
■ Example: jobs with times of 2,4,1,1,1 that arrive at times 0,0,3,3,3
■ Shortest-first runs A, B, C, D, E; average wait is 4.6 secs
■ If we run B, C, D, E, A, average wait is 4.4 secs
■ While B is running, more jobs arrive, allowing a better decision for the total

load

35 / 38

Shortest Remaining Time Next

■ Preemptive variant of FCFS
■ Still need to know run-times in advance
■ Helps short jobs get good service
■ May have a problem with indefinite overtaking

36 / 38

18

Three-Level Scheduler

■ First stage: job queue
■ Select different types of jobs (i.e., I/O- or CPU-bound) to balance workload
■ Note: relies on humans classify jobs in advance
■ Second stage: availability of main memory
⇒ Closely linked to virtual memory system; let’s defer that

■ CPU scheduler

37 / 38

User Requirements

■ Users must be able to specify job characteristics: estimated CPU time, I/O
versus CPU balance, perhaps memory

■ Scheduler categories must reflect technical and managerial issues
■ Lying about characteristics may give better turnaround times, but at hte

expense of total system throughput
■ Should the resonse be technical or administrative?

38 / 38

19

	Deadlock Avoidance
	Deadlock Avoidance
	Process Trajectories
	Problems
	Avoiding Deadlock
	Alternate Process Trajectory
	Safe and Unsafe States
	The Banker's Algorithm (Dijkstra, 1965)
	Example
	The Banker's Algorithm for Multiple Resources
	Why Isn't This Useful?
	Example: File Binding Time

	Deadlock Prevention
	Preventing Deadlocks
	Attacking Mutual Exclusion
	Attacking Holding and Wait
	A Variant is Useful
	Attacking Circular Wait
	Mainframe Resources
	Two-Phase Locking
	What's Really Done About Deadlocks?
	What About Linux?

	Scheduling
	Scheduling
	Environments
	Process Behavior
	When to Make Scheduling Decisions
	Preemptive vs. Nonpreemptive Schedulers
	Categories of Scheduling Algorithms
	Goals
	Goals: Batch Systems
	Interactive Systems
	Real-Time Systems

	Batch Schedulers
	Batch Schedulers
	First-Come, First-Served
	First-Come, First-Served
	Shortest First
	Optimality Requires Simultaneous Availability
	Shortest Remaining Time Next
	Three-Level Scheduler
	User Requirements

