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Deadlock Avoidance

■ If we can detect deadlocks, can we avoid them?
■ Yes, but. . .
■ We can avoid deadlocks if certain information is available in advance
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Process Trajectories
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A needs the printer from X1 to X3; it needs the plotter from X2 to X4.
B needs the plotter from Y1 to Y3; it needs the printer from Y2 to Y4.
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Problems

■ Warning sign: A and B are asking for resources in a different order
■ Green region: both A and B have the printer — impossible
■ Yellow region: both have the plotter
■ Blue — both have both devices. . .
■ The colored regions represent impossible states and cannot be entered
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Avoiding Deadlock

■ If the system ever enters the red-bordered state, it will deadlock
■ At time t, cannot schedule B
■ If we do, system will enter deadlock state
■ Must run A until X4
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Alternate Process Trajectory
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If A and B ask for the plotter first, there’s no danger. B will clearly block if it’s
scheduled, so A will proceed. The dangerous state was where a process entered a
clear box that would deadlock.
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Safe and Unsafe States

■ A state is safe if not deadlocked and there is a scheduling order in which all
processes can complete, even if they all ask for all of their resources at once

■ An unsafe state is not deadlocked, but no such scheduling order exists
■ It may even work, if a process releases resources at the right time
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The Banker’s Algorithm (Dijkstra, 1965)

■ Assume we’re dealing with a single resource — perhaps dollars
■ Every customer has a “line of credit” — a maximum possible resource

allocation”

■ The banker only has a certain amount of cash on hand
■ Not everyone will need all of their credit at once
■ Solution: only grant requests if they leave us in a safe state
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Example

Has Max
A 0 6
B 0 5
C 0 4
D 0 7

Free: 10

Has Max
A 1 6
B 1 5
C 2 4
D 4 7

Free: 2

Has Max
A 1 6
B 2 5
C 2 4
D 4 7

Free: 1
The first state is safe; we can grant the requests sequentially. The second state is
safe; we can grant C’s maximum request, let it run to completion, and then have
$4 to give to B or D.
If, after the second state, we give $1 to B, we enter an unsafe state — there isn’t
enough money left to satisfy all possible requests.
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The Banker’s Algorithm for Multiple Resources

■ Build matrices C (currently assigned) and R (and still needed), just as we
used for deadlock detection

■ Build vectors E (existing resources) and A (available), again as before
■ To see if a state is safe:

1. Find a row R whose unmet needs are ≤ A
2. Mark that row; add its resources to A
3. Repeat until either all rows are marked, in which case the state is safe, or

some are unmarked, in which case it’s unsafe

■ Run this algorithm any time a resource request is made
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Why Isn’t This Useful?

■ Every process must state its resource requirements at startup
■ This is rarely possible today
■ Processes come and go
■ Resources vanish as hardware breaks
■ Not really used these days. . .
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Example: File Binding Time

■ Old mainframes: all file name binding is done immediately prior to execution.
Also makes it easy to move files around

■ Classic Unix: file names on command line (but not clearly identifiable as such)
or compiled-in to commands. Occasional overrides via environment variables or
options.

■ GUIs: many files selected via menus

Early versus late binding is a major issuse in system design. Both choices here
have their advantages and disadvantages
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Deadlock Prevention 12 / 38

Preventing Deadlocks

■ Practically speaking, we can’t avoid deadlocks
■ Can we prevent them in the real world?
■ Let’s go back to the four conditions:

1. Mutual exclusion
2. Hold and Wait
3. No preemption
4. Circular wait
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Attacking Mutual Exclusion

■ Much less of an issue today — fewer single-user resources
■ Many of the existing ones are dedicated to single machines used by single

individuals, i.e., CD drives
■ Printers are generally spooled

⇒ No contention; only the printer daemon requests it

■ Not a general solution, but useful nevertheless
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Attacking Holding and Wait

■ Could require processes to state their requirements up front
■ Still done sometimes in the mainframe world
■ Of course, if we could do that, we could use the Banker’s Algorithm
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A Variant is Useful

■ Before requesting a resource, release all currently-held resources
■ Request all new ones at once
■ Doesn’t work if some resources must be held
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Attacking Circular Wait

■ Number each possible resource:

1. Scanner
2. Printer
3. Tape drive
4. . . .

■ Resources must be requested in numerical order
■ Can’t deadlock — prevents the out-of-order scenario we saw earlier
■ Used on old mainframes
■ Can combine this with release-and-rerequest
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Mainframe Resources

■ Wait until enough tape drives are available
■ Wait until memory region is available
■ Wait for all disk files to be free

Order based on typical wait time — disk files freed up quickly, while tape drives
waited for operators to find and mount tape reels
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Two-Phase Locking

■ Frequently used in databases
■ Processes need to lock several records then update them all
■ Phase 1: try locking each record, one at a time
■ On failure, release them all and restart
■ When they’re all locked, do the updates and then the release
■ Effectively the same as “request everything up front”
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What’s Really Done About Deadlocks?

■ In the OS, nothing. . .
■ Overprovision some resources, such as process slots
■ But — still very important in some applications, notably databases
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What About Linux?

■ No deadlock prevention or detection for applications or threads
■ The kernel does care about deadlocks for itself.

/* We can’t just spew out the rules

* here because we might fill the

* available socket buffer space and

* deadlock waiting for auditctl to

* read from it... which isn’t ever

* going to happen if we’re actually

* running in the context of auditctl

* trying to _send_ the stuff */
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Scheduling 21 / 38

Scheduling

■ Suppose several processes are runnable?
■ Which one is run next?
■ Many different ways to make this decision
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Environments

■ Old batch systems didn’t have a scheduler; they just read whatever was next
on the input tape

■ Actually, they did have a scheduler: the person who loaded the card decks
onto the tape

■ Hybrid batch/time-sharing systems tend to give priority to short timesharing
requests

■ Still a policy today: must give priority to interactive requests
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Process Behavior

■ Processes alternate CPU use with I/O requests
■ I/O requests frequently block, either waiting for input or when too much has

been written and no buffer space is available
■ CPU-bound processes think more than they read or write
■ I/O-bound processes do lots of I/O; it’s (usually) not that the I/O operations

are so time-consuming
■ Absolute speed of CPU and I/O devices is irrelevant; what matters is the ratio

■ CPUs have been getting much faster relative to disks
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When to Make Scheduling Decisions

■ After a fork — run the parent or child?
■ On process exit
■ When a process blocks
■ When I/O completes
■ Sometimes, after timer interrupts
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Preemptive vs. Nonpreemptive Schedulers

■ Nonpreemptive scheduler: lets a process run as long as it wants
■ Only switches when it blocks
■ Preemptive: switches after a time quantum
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Categories of Scheduling Algorithms

■ Batch — responsiveness isn’t important; preemption moderately important
■ Interactive — must satisfy a human; preemption important
■ Real-time — often nonpreemptive
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Goals

■ Fairness — give each process its share of the CPU
■ Policy and enforcement — give preference to work that is administratively

favored; prevent subversion of OS scheduling policy
■ Balance — keep all parts of the system busy
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Goals: Batch Systems

■ Throughput — maximize jobs/hour
■ Turnaround time — return jobs quickly. Often want to finish short jobs very

quickly
■ CPU utilization
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Interactive Systems

■ Response time — respond quickly to user requests
■ Meet user expectations — psychological

◆ Users have a sense of “cheap” and “expensive” requests
◆ Users are happier if “cheap” requests finish quickly
◆ “Cheap” and “expensive” don’t always correspond to reality!
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Real-Time Systems

■ Meet deadlines — avoid losing data (or worse!)
■ Predictability — users must know when their requests will finish
■ Requires careful engineering to match priorities to actual completion times and

available resources
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Batch Schedulers 31 / 38

Batch Schedulers

■ First-come, first-served
■ Shortest first
■ Shortest remaining time first
■ Three-level scheduler
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First-Come, First-Served

■ Run the first process on the run queue
■ Never preempt based on timer
■ Seems simple; just like waiting in line
■ Not very fair
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First-Come, First-Served

■ Imagine a CPU-bound process A: thinks for 1 second, then reads 1 disk block
■ There’s also an I/O-bound process B that needs to read 1000 blocks
■ A runs for 1 second, then issues an I/O request
■ B runs for almost no time, then issues an I/O request
■ A then runs for another second
■ It takes 1000 seconds for B to finish
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Shortest First

■ Suppose you know the time requirements of each job
■ A needs 8 seconds, B needs 4, C needs 4, D needs 4
■ Run B, C, D, A
■ Nonpreemptive
■ Provably fair:

◆ Suppose four jobs have runtimes of a, b, c, and d
◆ First finishes at time a, second at a + b, etc
◆ Mean turnaround is (4a + 3b + 2c + d)/4
◆ d contributes less to the mean
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Optimality Requires Simultaneous Availability

■ Jobs don’t all arrive at the same time
■ Can’t make optimal scheduling decision without complete knowledge
■ Example: jobs with times of 2,4,1,1,1 that arrive at times 0,0,3,3,3
■ Shortest-first runs A, B, C, D, E; average wait is 4.6 secs
■ If we run B, C, D, E, A, average wait is 4.4 secs
■ While B is running, more jobs arrive, allowing a better decision for the total

load
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Shortest Remaining Time Next

■ Preemptive variant of FCFS
■ Still need to know run-times in advance
■ Helps short jobs get good service
■ May have a problem with indefinite overtaking
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Three-Level Scheduler

■ First stage: job queue
■ Select different types of jobs (i.e., I/O- or CPU-bound) to balance workload
■ Note: relies on humans classify jobs in advance
■ Second stage: availability of main memory
⇒ Closely linked to virtual memory system; let’s defer that

■ CPU scheduler
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User Requirements

■ Users must be able to specify job characteristics: estimated CPU time, I/O
versus CPU balance, perhaps memory

■ Scheduler categories must reflect technical and managerial issues
■ Lying about characteristics may give better turnaround times, but at hte

expense of total system throughput
■ Should the resonse be technical or administrative?
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