Interrupts

e Forcibly change normal flow of control

e Enters the kernel at a specific point; the kernel then figures out which
Interrupt handler should run

e Many different types of interrupts

CS@ Steven M. Bellovin __ February 8, 2006 __ 1
CuU

Types of Interrupts

e Synchronous versus asynchronous

e Asynchronous
— From external source, such as I/O device

— Not related to instruction being executed

e Synchronous (also called exceptions)

— Programming errors or requests for kernel intervention
— Faults — correctable; offending instruction is retried

— Traps — often for debugging; instruction isn'’t retried

CS@ Steven M. Bellovin __ February 8, 2006 ___ 2
CuU

Interrupts and Hardware

e |/O devices have (unique or shared) Interrupt Request Lines (IRQs)
e Complex mechanisms to pass IRQs to CPU
e Interrupts can have varying priorities

e PICs and APICs map IRQs to interrupt vectors, and pass the latter to
the CPU

e Priority and load-balancing scheme used on multiprocessors

CS@ Steven M. Bellovin __ February 8, 2006 __ 3
CuU

Interrupt Masking

e Two different types: global and per-IRQ
e Global — delays all interrupts
e Selective — individual IRQs can be masked selectively

e Selective masking is usually what’s needed — interference most
common from two interrupts of the same type

CS@ Steven M. Bellovin __ February 8, 2006 ___ 4
CuU

Dispatching Interrupts

e Each interrupt has to be handled by a special device- or trap-specific
routine

e Interrupt Descriptor Table (IDT) has gate descriptors for each
iInterrupt vector

e Hardware locates the proper gate descriptor for this interrupt vector,
and locates the new context

e A new stack pointer, program counter, CPU and memory state, etc.,
are loaded

e Global interrupt mask set

e The old program counter, stack pointer, CPU and memory state, etc.,
are saved on the new stack

e The specific handler is invoked

CS@ Steven M. Bellovin __ February 8, 2006 __ 5
CuU

Returning From an Interrupt

e Load old program counter, stack pointer, CPU and memory state,
etc., from the interrupt handler’s stack

e Branches back to previous program; no change should be noticeable

e Note: CPU state generally unmasks interrupts

CS@ Steven M. Bellovin __ February 8, 2006 __ 6
CuU

Nested Interrupts

e What if a second interrupt occurs while an interrupt routine is
excuting?

e Generally a good thing to permit that — is it possible?

e And why is it a good thing?

CS@ Steven M. Bellovin __ February 8, 2006 ___ /
CuU

Maximum Parallelism

e You want to keep all 1/0 devices as busy as possible

e In general, an I/O interrupt represents the end of an operation;
another request should be issued as soon as possible

e Most devices don't interfere with each others’ data structures:; there’s
no reason to block out other devices

CS@ Steven M. Bellovin __ February 8, 2006 __ 8
CuU

Portability

e Which has a higher priority, a disk interrupt or a network interrupt?

e Different CPU architectures make different decisions

e By not assuming or enforcing any priority, Linux becomes more
portable

CS@ Steven M. Bellovin __ February 8, 2006 ___ 9
CuU

Nested Interrupts

e As soon as possible, unmask the global interrupt
e As soon as reasonable, re-enable interrupts from that IRQ

e But that isn’t always a great idea, since it could cause re-entry to the
same handler

e |IRQ-specific mask is not enabled during interrupt-handling

CS@ Steven M. Bellovin __ February 8, 2006 __ 10
CuU

First-Level Interrupt Handler

e Often in assembler

e Perform minimal, common functions: saving registers, unmasking
other interrupts

e Eventually, undoes that: restores registers, returns to previous context

e Most important: call proper second-level interrupt handler (C
program)

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 11
CU

Exception Handling

e Three broad categories: debugging, virtual memory, error
e \We're not going to discuss program trace or breakpoints in this class
e Virtual memory is a topic for later

e \What about error exceptions?

CS@ Steven M. Bellovin __ February 8, 2006 ___ 12
CuU

Error Exceptions

e Most error exceptions — divide by zero, invalid operation, illegal
memory reference, etc. — translate directly into signals

e This isn’'t a coincidence...

e The kernel’s job is fairly simple: send the appropriate signal to the
current process

e That will probably kill the process, but that’s not the concern of the
exception handler

CS@ Steven M. Bellovin __ February 8, 2006 __ 13
CuU

Interrupt Handling Philosophy

e Do as little as possible in the interrupt handler,
e Defer non-critical actions till later
e Again — want to do as little as possible with IRQ interrupts masked

e NoO process context available

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 14
CU

No Process Context

e Interrupts (as opposed to exceptions) are not associated with
particular instructions

e They're also not associated with a given process

e The currently-running process, at the time of the interrupt, as no
relationship whatsoever to that interrupt

e Interrupt handlers cannot refer to cur r ent

e Interrupt handlers cannot sleep!

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 15
CU

Interrupt Stacks

e When an interrupt occurs, what stack is used?
e The kernel stack of the current process, whatever it is, is used

e (There’s always some process running — the “idle” process, if
nothing else)

e It's only 8K bytes — we’d better not have too-deep nesting of
Interrupts

CS@ Steven M. Bellovin __ February 8, 2006 __ 16
CuU

Finding the Proper Interrupt Handler

e First differentiator is the interrupt vector

e On modern hardware, multiple I/O devices can share a single IRQ
and hence interrupt vector

e Each device’s interrupt service routine (ISR) for that IRQ is called; the
determination of whether or not that device has interrupted is
device-dependent

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 17
CU

Allocating IRQs to Devices and Drivers

e |IRQ assignment is hardware-dependent.

e Sometimes it's hardwired, sometimes it's set physically, sometimes
it's programmable

e Linux device drivers request IRQs when the device is opened

e Note: especially useful for dynamically-loaded drivers, such as for
USB or PCMCIA devices

e Two devices that aren’t used at the same time can share an IRQ,
even if the hardware doesn’t support simultaneous sharing

CS@ Steven M. Bellovin __ February 8, 2006 __ 18
CuU

Monitoring Interrupt Activity

e Linux has a pseudo-file system, / pr oc, for monitoring (and
sometimes changing) kernel behavior
e Run
cat /proc/interrupts

to see what'’s going on

CS@ Steven M. Bellovin __ February 8, 2006 ___ 19
CuU

/proc/interrupts

$ cat /proc/interrupts

CPUO

0: 130066609 XT-PIC tiner

2: 0 XT-PI C cascade

3. 0) XT-PI C uhci _hcd

5: 0 XT-PI C uhci _hcd

8. 436 XT-PIC rtc

9: 2431568 XT-PIC acpi, libata, uhci _hcd, eth(
10: 0 XT-PIC ehci _hcd, uhci _hcd
14 1170240 XT-PIC 1deO
NM 0
ERR: 0

Columns: IRQ, count, interrupt controller, devices

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 20
CU

Much More In /proc

$ cat /proc/pci
PCl devices found:
Bus 0, device O, function O:
Cl ass 0600: PCI device 8086: 2580 (rev 4).
Bus 0O, device 1, function O:
Cl ass 0604: PCl device 8086: 2581 (rev 4).
| RQ 11.
Mast er Capable. No bursts. Mn Gnt=2.
Bus O, device 2, function O:
Cl ass 0300: PClI device 8086: 2582 (rev 4).
| RQ 11.
Non- prefetchable 32 bit nenory at OxdffO00000 [Oxdff 7fff
|/ O at 0xe898 [0xe89f].

CS@ Steven M. Bellovin __ February 8, 2006 ___ 21
CuU

Soft Interrupts

e We don’t want to do too much in regular interrupt handlers:
— Interrupts are masked

— We don’t want the kernel stack to grow too much
e Instead, interrupt handlers schedule work to be performed later
e Three mechanisms: softirgs, tasklets, and work queues
e Softirgs are used to implement tasklets

e For all of these, requests are queued

CS&¥» Steven M. Bellovin __ February 8, 2006 ___ 22
CU

Softirgs

e Specified at kernel compile time

e Limited number:
Priority Type

CS¥
CU

ok wWDNPEFO

High-priority tasklets
Timer interrupts
Network transmission
Network reception
SCSI disks

Regular tasklets

Steven M. Bellovin __ February 8, 2006 __ 23

Running Softirgs

e Run at various points by the kernel
e Most important: after handling IRQs and after timer interrupts

e Softirg routines can be executed simultaneously on multiple CPUSs:
— Code must be re-entrant

— Code must do its own locking as needed

CS@ Steven M. Bellovin __ February 8, 2006 __ 24
CuU

Rescheduling Softirgs

e A softirq routine can reschedule itself
e This could starve user-level processes
e Softirg scheduler only runs a limited number of requests at a time

e The rest are executed by a kernel thread, which competes with user
processes for CPU time

CS@ Steven M. Bellovin __ February 8, 2006 __ 25
CuU

Tasklets

e Similar to softirgs
e Created and destroyed dynamically

e Individual tasklets are locked during execution; no problem about
re-entrancy, and no need for locking by the code

e The preferred mechanism for most deferred activity

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 26
CU

Work Queues

e Always run by kernel threads

e Softirgs and tasklets run in an interrupt context; work queues have a
process context

e Because they have a process context, they can sleep

e However, they're kernel-only; there is no user mode associated with it

CS@ Steven M. Bellovin __ February 8, 2006 ___ 27
CuU

System Calls

e System calls are the way in which user programs request actions
from the kernel

e Almost always, they represent controlled access to privileged
operations

e If something can be done with reasonable efficiency purely at user
level, it should not be a system call

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 28
CU

Division of Labor

e When a C program writes open() , the compiled program is not
Issuing a system call directly

e There is a library subroutine named open(), generally in assembler;
It issues the actual system call

e May need to convert from C calling conventions to kernel calling
conventions

CS&¥» Steven M. Bellovin __ February 8, 2006 ___ 29
CU

Entering the Kernel

e The kernel is entered via a software interrupt
e This interrupt is handled very much like 1/O interrupts or exceptions

e A small assembler first-level interrupt handler calls the appropriate C
code to process the system call

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 30
CU

Passing Parameters

e Passing parameters to system calls is rather complex
e For ordinary C functions, parameters are passed on the stack

e Interrutps, including software interrupts, switch stacks; copying data
between stacks is complex

e Parameters are always passed in registers

e The assembler stub pushes these onto the stack, to emulate the C
Interface at the kernel end

CS@ Steven M. Bellovin __ February 8, 2006 __ 31
CuU

Rules #1-3 for System Calls

1. Check all parameters carefully
2. Check all parameters carefully

3. Check all parameters carefully

By the way, check all parameters carefully

CS&¥» Steven M. Bellovin __ February 8, 2006 ___ 32
CU

Copying Data to and from User Space

e Some systems calls (i.e., wite() andread()) pass a buffer
address; data is to be copied to or from the kernel

e It's vital to check that the program only passes valid, legal,
user-space addresses

e Users must not read or write kernel memory, or reference
non-existent memory

e Great care is needed

e First check: make sure that address passed is lower than
PAGE_OFFSET, i.e., not in the kernel

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 33
CU

Page Faults and System Calls

e User memory may not exist, or may be paged out

e The virtual memory system will handle any page faults and copy in
the page if necessary; this operation could block

e Operation can fail if memory doesn’t exist, or if access type is wrong

e Always do such copies via standard subroutines, and check for error
returns

e The page fault handler makes sure that kernel page faults come from
that section of code

e Page faults from elsewhere in the kernel crash the system!

CS@ Steven M. Bellovin __ February 8, 2006 __ 34
CuU

Adding a System Call

e Write the code

e Ifit's in a new file, add the filename to the appropriate Makefile
e Routines are generally named sys _Xxxx

e Add the syscall number to linux/syscalls.h

e Add the routine in the proper spot in syscall_table.

e Write the C linkage routine

CS@ Steven M. Bellovin __ February 8, 2006 __ 35
CuU

A Reimplementation of get pi d()
#1 ncl ude <asni uni std. h>

asnl i nkage | ong sys_nypi d(voi d)
{

}

return current->tgid,

CS&¥» Steven M. Bellovin __ February 8, 2006 __ 36
CU

Simple User Linkage

#define _ NR nypid 294
__syscall 0(l ong, nypid)

int main() {
printf("%\n", nypid());
return O;

}

_syscal | 0 is for a system call with no arguments; there are also
_syscall 1, _syscall?2,..., _syscall®6

CS@ Steven M. Bellovin __ February 8, 2006 __ 37
CuU

