
Interrupts

• Forcibly change normal flow of control

• Enters the kernel at a specific point; the kernel then figures out which
interrupt handler should run

• Many different types of interrupts
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Types of Interrupts

• Synchronous versus asynchronous

• Asynchronous

– From external source, such as I/O device

– Not related to instruction being executed

• Synchronous (also called exceptions)

– Programming errors or requests for kernel intervention

– Faults — correctable; offending instruction is retried

– Traps — often for debugging; instruction isn’t retried
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Interrupts and Hardware

• I/O devices have (unique or shared) Interrupt Request Lines (IRQs)

• Complex mechanisms to pass IRQs to CPU

• Interrupts can have varying priorities

• PICs and APICs map IRQs to interrupt vectors, and pass the latter to
the CPU

• Priority and load-balancing scheme used on multiprocessors
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Interrupt Masking

• Two different types: global and per-IRQ

• Global — delays all interrupts

• Selective — individual IRQs can be masked selectively

• Selective masking is usually what’s needed — interference most
common from two interrupts of the same type
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Dispatching Interrupts

• Each interrupt has to be handled by a special device- or trap-specific
routine

• Interrupt Descriptor Table (IDT) has gate descriptors for each
interrupt vector

• Hardware locates the proper gate descriptor for this interrupt vector,
and locates the new context

• A new stack pointer, program counter, CPU and memory state, etc.,
are loaded

• Global interrupt mask set

• The old program counter, stack pointer, CPU and memory state, etc.,
are saved on the new stack

• The specific handler is invoked
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Returning From an Interrupt

• Load old program counter, stack pointer, CPU and memory state,
etc., from the interrupt handler’s stack

• Branches back to previous program; no change should be noticeable

• Note: CPU state generally unmasks interrupts
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Nested Interrupts

• What if a second interrupt occurs while an interrupt routine is
excuting?

• Generally a good thing to permit that — is it possible?

• And why is it a good thing?
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Maximum Parallelism

• You want to keep all I/O devices as busy as possible

• In general, an I/O interrupt represents the end of an operation;
another request should be issued as soon as possible

• Most devices don’t interfere with each others’ data structures; there’s
no reason to block out other devices
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Portability

• Which has a higher priority, a disk interrupt or a network interrupt?

• Different CPU architectures make different decisions

• By not assuming or enforcing any priority, Linux becomes more
portable
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Nested Interrupts

• As soon as possible, unmask the global interrupt

• As soon as reasonable, re-enable interrupts from that IRQ

• But that isn’t always a great idea, since it could cause re-entry to the
same handler

• IRQ-specific mask is not enabled during interrupt-handling
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First-Level Interrupt Handler

• Often in assembler

• Perform minimal, common functions: saving registers, unmasking
other interrupts

• Eventually, undoes that: restores registers, returns to previous context

• Most important: call proper second-level interrupt handler (C
program)
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Exception Handling

• Three broad categories: debugging, virtual memory, error

• We’re not going to discuss program trace or breakpoints in this class

• Virtual memory is a topic for later

• What about error exceptions?
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Error Exceptions

• Most error exceptions — divide by zero, invalid operation, illegal
memory reference, etc. — translate directly into signals

• This isn’t a coincidence. . .

• The kernel’s job is fairly simple: send the appropriate signal to the
current process

• That will probably kill the process, but that’s not the concern of the
exception handler
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Interrupt Handling Philosophy

• Do as little as possible in the interrupt handler,

• Defer non-critical actions till later

• Again — want to do as little as possible with IRQ interrupts masked

• No process context available
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No Process Context

• Interrupts (as opposed to exceptions) are not associated with
particular instructions

• They’re also not associated with a given process

• The currently-running process, at the time of the interrupt, as no
relationship whatsoever to that interrupt

• Interrupt handlers cannot refer to current

• Interrupt handlers cannot sleep!
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Interrupt Stacks

• When an interrupt occurs, what stack is used?

• The kernel stack of the current process, whatever it is, is used

• (There’s always some process running — the “idle” process, if
nothing else)

• It’s only 8K bytes — we’d better not have too-deep nesting of
interrupts
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Finding the Proper Interrupt Handler

• First differentiator is the interrupt vector

• On modern hardware, multiple I/O devices can share a single IRQ
and hence interrupt vector

• Each device’s interrupt service routine (ISR) for that IRQ is called; the
determination of whether or not that device has interrupted is
device-dependent
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Allocating IRQs to Devices and Drivers

• IRQ assignment is hardware-dependent.

• Sometimes it’s hardwired, sometimes it’s set physically, sometimes
it’s programmable

• Linux device drivers request IRQs when the device is opened

• Note: especially useful for dynamically-loaded drivers, such as for
USB or PCMCIA devices

• Two devices that aren’t used at the same time can share an IRQ,
even if the hardware doesn’t support simultaneous sharing
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Monitoring Interrupt Activity

• Linux has a pseudo-file system, /proc, for monitoring (and
sometimes changing) kernel behavior

• Run

cat /proc/interrupts

to see what’s going on
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/proc/interrupts

$ cat /proc/interrupts
CPU0

0: 130066609 XT-PIC timer
2: 0 XT-PIC cascade
3: 0 XT-PIC uhci_hcd
5: 0 XT-PIC uhci_hcd
8: 436 XT-PIC rtc
9: 2431568 XT-PIC acpi, libata, uhci_hcd, eth0
10: 0 XT-PIC ehci_hcd, uhci_hcd
14: 1170240 XT-PIC ide0
NMI: 0
ERR: 0

Columns: IRQ, count, interrupt controller, devices
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Much More in /proc

$ cat /proc/pci
PCI devices found:
Bus 0, device 0, function 0:
Class 0600: PCI device 8086:2580 (rev 4).

Bus 0, device 1, function 0:
Class 0604: PCI device 8086:2581 (rev 4).

IRQ 11.
Master Capable. No bursts. Min Gnt=2.

Bus 0, device 2, function 0:
Class 0300: PCI device 8086:2582 (rev 4).

IRQ 11.
Non-prefetchable 32 bit memory at 0xdff00000 [0xdff7ffff].
I/O at 0xe898 [0xe89f].

. . .
Steven M. Bellovin February 8, 2006 21



Soft Interrupts

• We don’t want to do too much in regular interrupt handlers:

– Interrupts are masked

– We don’t want the kernel stack to grow too much

• Instead, interrupt handlers schedule work to be performed later

• Three mechanisms: softirqs, tasklets, and work queues

• Softirqs are used to implement tasklets

• For all of these, requests are queued
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Softirqs

• Specified at kernel compile time

• Limited number:
Priority Type

0 High-priority tasklets
1 Timer interrupts
2 Network transmission
3 Network reception
4 SCSI disks
5 Regular tasklets
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Running Softirqs

• Run at various points by the kernel

• Most important: after handling IRQs and after timer interrupts

• Softirq routines can be executed simultaneously on multiple CPUs:

– Code must be re-entrant

– Code must do its own locking as needed
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Rescheduling Softirqs

• A softirq routine can reschedule itself

• This could starve user-level processes

• Softirq scheduler only runs a limited number of requests at a time

• The rest are executed by a kernel thread, which competes with user
processes for CPU time
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Tasklets

• Similar to softirqs

• Created and destroyed dynamically

• Individual tasklets are locked during execution; no problem about
re-entrancy, and no need for locking by the code

• The preferred mechanism for most deferred activity
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Work Queues

• Always run by kernel threads

• Softirqs and tasklets run in an interrupt context; work queues have a
process context

• Because they have a process context, they can sleep

• However, they’re kernel-only; there is no user mode associated with it
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System Calls

• System calls are the way in which user programs request actions
from the kernel

• Almost always, they represent controlled access to privileged
operations

• If something can be done with reasonable efficiency purely at user
level, it should not be a system call
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Division of Labor

• When a C program writes open(), the compiled program is not
issuing a system call directly

• There is a library subroutine named open(), generally in assembler;
it issues the actual system call

• May need to convert from C calling conventions to kernel calling
conventions
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Entering the Kernel

• The kernel is entered via a software interrupt

• This interrupt is handled very much like I/O interrupts or exceptions

• A small assembler first-level interrupt handler calls the appropriate C
code to process the system call
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Passing Parameters

• Passing parameters to system calls is rather complex

• For ordinary C functions, parameters are passed on the stack

• Interrutps, including software interrupts, switch stacks; copying data
between stacks is complex

• Parameters are always passed in registers

• The assembler stub pushes these onto the stack, to emulate the C
interface at the kernel end
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Rules #1–3 for System Calls

1. Check all parameters carefully

2. Check all parameters carefully

3. Check all parameters carefully

By the way, check all parameters carefully
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Copying Data to and from User Space

• Some systems calls (i.e., write() and read()) pass a buffer
address; data is to be copied to or from the kernel

• It’s vital to check that the program only passes valid, legal,
user-space addresses

• Users must not read or write kernel memory, or reference
non-existent memory

• Great care is needed

• First check: make sure that address passed is lower than
PAGE OFFSET, i.e., not in the kernel
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Page Faults and System Calls

• User memory may not exist, or may be paged out

• The virtual memory system will handle any page faults and copy in
the page if necessary; this operation could block

• Operation can fail if memory doesn’t exist, or if access type is wrong

• Always do such copies via standard subroutines, and check for error
returns

• The page fault handler makes sure that kernel page faults come from
that section of code

• Page faults from elsewhere in the kernel crash the system!
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Adding a System Call

• Write the code

• If it’s in a new file, add the filename to the appropriate Makefile

• Routines are generally named sys xxx

• Add the syscall number to linux/syscalls.h

• Add the routine in the proper spot in syscall table.

• Write the C linkage routine
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A Reimplementation of getpid()

#include <asm/unistd.h>

asmlinkage long sys_mypid(void)

{

return current->tgid;

}
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Simple User Linkage

#define __NR_mypid 294

__syscall0(long, mypid)

int main() {

printf("%d\n", mypid());

return 0;

}

syscall0 is for a system call with no arguments; there are also
syscall1, syscall2, . . . , syscall6
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