
From the Abstract to the Concrete

• We’ve been discussing processes and threads at a high level

• We’re now going to look at how they’re implemented on Linux

• It’s often helpful to read the appropriate Linux kernel files along with
the text

Steven M. Bellovin February 6, 2006 1



What’s Different About Reality?

• Performance matters

• Therefore, data structures matter

• Provisions need to be made for things we haven’t talked about

• Much less abstract

Steven M. Bellovin February 6, 2006 2



High-Level Concepts

• Processes: creation, termination

• Threads: creation, termination

• Waiting for an event

• Interrupts and traps

Steven M. Bellovin February 6, 2006 3



Processes versus Threads

• To the kernel, threads are a lot like processes

• In Linux, threads are implemented as light-weight proceses

Steven M. Bellovin February 6, 2006 4



Lightweight Processes

• Similar to ordinary process, but share some resources

• Lighter-weight for the kernel because things like open file descriptors
and virtual memory tables need not be copied

• Implication: open file table and virtual memory table can’t be part of
process structure

Steven M. Bellovin February 6, 2006 5



The Linux task struct

• Stores per-process information

• As noted earlier, some of the data is a pointer to other data structures.

• Doesn’t contain the kernel stack

Steven M. Bellovin February 6, 2006 6



Indirect Data Structures

• thread info (see below)

• Virtual memory — shared between threads

• Current directory — shared between threads

• Open files — shared between threads

• Signal information — shared between threads

• Current tty — shared in the process group

Steven M. Bellovin February 6, 2006 7



Kernel Stack

• Stack size is 8K — the kernel doesn’t use many automatic variables

• Stored in the same data structure as the thread info structure

• thread info — at a known offset from the top of the stack — points
to the task struct entry

Steven M. Bellovin February 6, 2006 8



Stack Layout

0x015fbfff

0x015fa000

Stack

thread info

Process
Descriptor

(task struct)

The current macro points to the current process’ descriptor.

Steven M. Bellovin February 6, 2006 9



Efficiency and the Current Process Descriptor

• Masking off 13 bits of the stack address points to the thread info

structure

• The first 4 bytes of thread info point to task struct

• Thus, current is efficiently calculable from the stack pointer

• The current process descriptor is not in a static variable — very
useful for multiprocessors. (Why?)

• (Why can every stack be at the same address?)

Steven M. Bellovin February 6, 2006 10



Other Process Data Structures

• A pid field for each process — and a tgid field for the thread group
leader ’s pid

• Lots of doubly-linked lists (why doubly-linked?):

– All processes

– Array of runnable queues, one for each priority level

– Family relationships: parent, siblings, child

– Wait queues

• Hash table to convert from pid to task struct

Steven M. Bellovin February 6, 2006 11



Wait Queues

• Hold list of processes that are not runnable

• Many wait queues, one for each resource

• Two types of wait queue:

– Sharable resource ready — wake up all processes

– Exclusive resource ready — wake only one process

Steven M. Bellovin February 6, 2006 12



Sleeping Processes

• Processes put themselves to sleep

• Create and initialize a waitqueue variable

• Add this process to a wait queue

• Call the scheduler

☞ It will run another process

• When awakened, remove the entry from the wait queue and return to
the caller

• (The waitqueue variable is a local variable — why is that
legitimate?)

Steven M. Bellovin February 6, 2006 13



Sleeping is Really Much More Complex

• Many different ways for processes to sleep

• Interruptible and non-interruptible sleeps

• Race conditions

• Timeouts

• Multiprocessor complexity

Steven M. Bellovin February 6, 2006 14



Waking a Process

• Some other context wakes a process

– An interrupt

– Another thread in that process

– Another process

– A kernel thread or process

• Note well: an interrupt does not run in a process’ context — we’ll see
much more on this later

Steven M. Bellovin February 6, 2006 15



Switching Processes

• Very complex

• Very machine-dependent

• See the book for the gory details

Steven M. Bellovin February 6, 2006 16



High-Level View

• Save registers and other state for one process

• Load registers and other state for the next process

• Important state: address space

Steven M. Bellovin February 6, 2006 17



Where is Stuff Saved?

• Save general registers on the kernel stack

• Save other hardware context in thread struct (part of
task struct)

• Also have a hardware-defined Task State Segment ; some
per-process fields are stored there

Steven M. Bellovin February 6, 2006 18



Important Principles

• One process must save state where another can find it

• When the new state is loaded, the CPU is running another process —
the state is the process

• The stack pointer determines most of the state

Steven M. Bellovin February 6, 2006 19



The Stack Pointer and the State

• Some of the registers are on the stack

• The stack pointer determines the location of thread info

• thread info points to task struct

• Changing the stack pointer changes the process

Steven M. Bellovin February 6, 2006 20



Switching Processes

• Enter a subroutine; push registers onto the stack

• Save other state in thread struct

• Change the stack pointer

• Restore state from the new thread struct

• Restore registers from the new stack

• Return to the new process’ caller

Steven M. Bellovin February 6, 2006 21



Switching Stacks

Stack

struct
task_

Stack

task_
struct

• Called by someone

• Push registers

• Save state

• Change to Red stack

• Restore state

• Pop registers

• Return to Red caller

Steven M. Bellovin February 6, 2006 22



Flow of Control During Stack Change

Normal Stack Change

Steven M. Bellovin February 6, 2006 23



Floating Point Registers

• Floating point (FPU) and MMX instructions use a separate set of
registers

• SSE and SSE2 instructions use yet another set of registers

• FPU/MMX and SSE/SSE2 registers are not automatically saved on
interrupts

Steven M. Bellovin February 6, 2006 24



Floating Point Registers

• Legacy issue: floating point originally handled by outboard
(expensive) chip

• Expense: it takes a fair number of cycles to save and restore these
registers

• Rarity: most processes don’t use floating point

Steven M. Bellovin February 6, 2006 25



Lazy Save/Restore

• Hardware flag set on process switch

• If process issues floating point instruction and flag is set, trap

• Kernel then does a save/restore on the floating point registers

• A software flag is set for this process

• Any time it’s set, floating point registers are restored for that process
at switch time

• Bottom line: only done if needed; if only one process uses floating
point, no save/restore needed

Steven M. Bellovin February 6, 2006 26



Creating a Process

• Three types: fork(), clone(), vfork()

• fork() is traditional: duplicate process

☞ Can be expensive

• clone() is used for lightweight processes

• vfork() is an efficiency hack

Steven M. Bellovin February 6, 2006 27



Create a New Process: fork()

• Allocate a new PID

• Save floating point registers if needed

• Allocate memory for a new task struct

• Allocate memory for a new stack

• Copy the old task struct and stack to the new ones, modifying the
pointers appropriately

• Copy other data, such as address space and open files

• Put the new process on the run queue

Steven M. Bellovin February 6, 2006 28



Returning from fork()

• The new process has the same stack — and hence the same return
address — as the old one

• It will therefore return to the same spot

• Very minor changes are made to variables, so that it returns a child
process indication rather than a parent process (0 instead of the
child’s PID)

• Similar magic to process switching

Steven M. Bellovin February 6, 2006 29



Copying Indirect Data Structures

• Open files: new set of file descriptors point to shared open file table

• Virtual memory: copy virtual memory page table, but set up for copy
on write semantics

Steven M. Bellovin February 6, 2006 30



Copy on Write

• Both page tables point to the same memory pages

• Mark all pages non-writable

• If a process writes to a page, it causes a page fault

• That page is copied, a new page table entry is created in one process
for the copy; both copies are marked writable in both processes

• Usually, the child process will exec() a new program soon; not many
pages are copied

Steven M. Bellovin February 6, 2006 31



Creating a Light-Weight Process

• Requires help from userland to create a thread: a new user-level
stack needs to be allocated

• Process creation is similar to fork(), except for copying indirect
data structures

• Page table is shared; nothing is marked read-only

• Open file table is shared, too

Steven M. Bellovin February 6, 2006 32



Efficiency Hack: vfork()

• Copying a page table can be expensive

• Write protection traps are expensive

• Most new processes execute a new program almost immediately
anyway; there’s no major need for a copy of the address space

• vfork() freezes the parent process and uses its address space for
the child process

• When the child process exec()s a new program, the parent is
released

• Saves a lot of data copying

Steven M. Bellovin February 6, 2006 33



Process Exit

• Difference between process and thread exit

• Remove process from lots of queues; free certain data structures if
not in use by other processes

• For process exit, must close open files

☞ Note: this can block; on misbehaving systems, can block forever,
leaving the process unkillable!

• Become a zombie process

Steven M. Bellovin February 6, 2006 34



Zombies

• Processes don’t fully exit until the parent process issues a wait()

system call

• Allows the parent to check exit status of child processes

• Data structure is finally cleaned up and freed after this happens

• If a parent exits before its children, the child processes become
children of process 1

• Process 1 is always sitting in a wait() loop

Steven M. Bellovin February 6, 2006 35



Recap

• The entire mechanism is driven by the data structures

• Context switches happen by creating return values in the new data
structure

• When the new structure is referenced, the new context is magically
used

Steven M. Bellovin February 6, 2006 36


