
What is a Thread?

• Similar to a process

• Separate “thread of execution”

• Each thread has a separate stack, program counter, and run state

Steven M. Bellovin February 1, 2006 1



Differences Between Processes and Threads

• Threads share the same address space

• Threads always have the same security context (i.e., UID)

• Threads share file state.

– A child process will inherit open files from the parent, but won’t
see newly-opened files. A child thread will see them.

• Non-preemptive scheduling

Steven M. Bellovin February 1, 2006 2



Non-preemptive Scheduling

• There is no timer to make a thread yield the CPU

• Threads must voluntarily yield control to let another thread run

• Thread history isn’t taken into account by the scheduler

• Threads are co-operative, not competitive

Steven M. Bellovin February 1, 2006 3



Why Threads?

• Perform operations in parallel on the same data

• Avoid complex explicit scheduling by applications

• Often more efficient than separate processes

Steven M. Bellovin February 1, 2006 4



Example: Web Browser

• Download page in one thread

• Actually, use a separate thread for each separately-downloaded
image

• Let another thread respond to mouse clicks

• Maybe have a separate thread for each tab or page image

Steven M. Bellovin February 1, 2006 5



More Examples

• Web server

• Word processor

• Most graphical applications

• Anything where separate execution patterns need to share lots of
data

Steven M. Bellovin February 1, 2006 6



Implementing Threads

• Three basic strategies

• User-level: possible on most operating systems, even ancient ones

• Kernel-level: looks almost like a process (i.e., Linux, Solaris)

• Scheduler activations (Digital Tru Unix 64, NetBSD, some Mach)

Steven M. Bellovin February 1, 2006 7



User-Level Threads

• Thread creation, destruction, and scheduling done at user level

• To create a thread, must allocate storage for stack, program counter,
registers, state, etc, in a thread table

• When a thread yields the CPU or blocks, the thread library saves
everything in the thread table

• The thread scheduler finds the highest-priority thread that’s ready to
run

• Its registers, program counter, etc., are restored from its thread table

Steven M. Bellovin February 1, 2006 8



Efficiency Gains

• No system calls needed

• No context switch

• No copying data safely across a protection boundary

• No need to flush the hardware memory cache

Steven M. Bellovin February 1, 2006 9



Disadvantages of User-Level Threads

• Blocking system calls

• Page faults

• Inability to benefit from multiprocessor CPUs

• Kernel can’t automatically grow per-thread stacks

Steven M. Bellovin February 1, 2006 10



Growing the Stack

• The system allocates a certain amount of memory for the initial piece
of the stack

• References to other potential parts of the stack cause a trap

• If this trap looks like an attempt to use an unallocated part of the
stack, the kernel allocates more memory and extends the stack

• This only works if the kernel knows where the stack is

Steven M. Bellovin February 1, 2006 11



Blocking System Calls

• What if a thread issues, say, a read() call and there’s no data
available?

• The kernel will make the whole process block because it’s unaware of
the thread structure

Steven M. Bellovin February 1, 2006 12



Page Faults

• Part of the virtual memory system; won’t say much now

• Briefly, though — a trap occurs because referenced memory isn’t
available

• No ability to suspend just one thread

Steven M. Bellovin February 1, 2006 13



Wrapper Functions

• The thread library can contain alternate versions of system call
functions

• These versions check for blocking before calling the kernel

• Example: do a non-blocking select() or poll() before a read()

• If the call would block, fire up another thread instead

• If no threads are ready, do a blocking select() or poll() and let
the kernel run a different process

Steven M. Bellovin February 1, 2006 14



Kernel Threads

• Similar thread table, but in the kernel

☞ Often integrated with process table

• No problem with blocking system calls — ordinary process
scheduling does the right thing

• Handles multi-CPU case easily

• But — thread-switching is expensive, since it needs a context switch

• Still cheaper than process switches, since you can use the same
virtual memory map

Steven M. Bellovin February 1, 2006 15



Other Schemes

• Hybrid: some kernel threads, with each kernel thread supporting
several user-level threads

• Scheduler activations

• Pop-up threads

Steven M. Bellovin February 1, 2006 16



Scheduler Activations

• Get the best of both worlds — the efficiency of user-level threads and
the non-blocking ability of kernel threads

• Relies on upcalls

Steven M. Bellovin February 1, 2006 17



What’s an Upcall?

• Normally, user programs call functions in the kernel

• Sometimes, though, the kernel calls a user-level process to report an
event

• Sometimes considered unclean — violates usual layering

Steven M. Bellovin February 1, 2006 18



Scheduler Activations

• Thread creation and scheduling is done at user level

• When a system call from a thread blocks, the kernel does an upcall to
the thread manager

• The thread manager marks that thread as blocked, and starts running
another thread

• When a kernel interrupt occurs that’s relevant to the thread, another
upcall is done to unblock it

Steven M. Bellovin February 1, 2006 19



Upcall

Thread
2

Thread
2

Thread Thread
Sched

Thread Thread
1

Thread
Sched

Kernel

1 Sched

System
call

Upcall
Interrupt

Steven M. Bellovin February 1, 2006 20



Pop-Up Threads

• When a message arrives, the kernel creates a new thread

• Sometimes, the thread can run entirely in the kernel

• Messy and delicate — what process should own the thread, what
sorts of events result in thread creation, etc.

Steven M. Bellovin February 1, 2006 21



Using Threads

• Library routines may be used by more than one thread simultaneously

• Not all routines are prepared for this

• Static variables can be overwritten by another thread

• Must use reentrant routines

Steven M. Bellovin February 1, 2006 22



What is a Reentrant Routine?

• A routine that can be invoked more than once simultaneously

• Can only use local variables or dynamically allocated variables

• Must not use static variables

• Many C library routines do use static buffers!

Steven M. Bellovin February 1, 2006 23



Normal and Reentrant Versions

Normal struct tm *localtime(const time t *timep);
Reentrant struct tm *localtime r(const time t *timep, struct tm *result);

The normal version stores store the result in a static buffer and passes a
pointer back; the reentrant version requires the caller to supply a buffer.

Steven M. Bellovin February 1, 2006 24



What if You Need Global Variables?

• Sometimes, there are global variables you have to use

• The whole purpose of threads is to share access to certain data

• Must synchronize access, but that’s a topic for another day

Steven M. Bellovin February 1, 2006 25



Signals

• Short messages to a process

• More accurately, an interrupt sent to a process, much like hardware
interrupts to the OS

• Often, signals not explicitly fielded will terminate the process

Steven M. Bellovin February 1, 2006 26



Types of Signals

Environment Hangup, ˆ C, coredump, power failure

Bugs Assertion failed, memory error, floating point error, resoure
exceeded, pipe closed, bad system call, timeout

Debugging Tracing, profiling

I/O I/O possible, urgent message, window size change, background
process wants to talk to terminal

Other Many more

Steven M. Bellovin February 1, 2006 27



Default Signal Actions

• Ignore — harmless

• Terminate program

• Create a core dump and terminate program

• Suspend program

• Resume program

Steven M. Bellovin February 1, 2006 28



Programs and Signals

• Send a signal to a process or thread

• Call a subroutine when a signal occurs

• Temporarily block signals

• Test for or wait for a signal

Steven M. Bellovin February 1, 2006 29



Sending a Signal

• Signals can be generated by the kernel

• Example: when the terminal handler sees ˆ C, it sends SIGINT to all
processes associated with that terminal

• Signals can be sent explicitly by another process:
kill(pid, signum)

• The shell’s kill command translates directly into the kill()

system call

• The default signal is catchable; you have to be more forceful to deal
with that if you really want to terminate the process. . .

Steven M. Bellovin February 1, 2006 30



Catching Signals

• The sigaction() subroutine specifies what to do when a signal
occurs

• Choices: default action, call a subroutine, ignore the signal

• SIGKILL can’t be caught; it always terminates the program

• When a signal is caught, other signals can be blocked until the
subroutine returns

Steven M. Bellovin February 1, 2006 31



Blocking Signals

• sigprocmask() blocks some signals

• The signals remain pending; when unblocked, they will occur

• SIGKILL can’t be blocked, either

Steven M. Bellovin February 1, 2006 32



Suspending a Process

• sigsuspend() suspends a process and changes the set of blocked
signals

• Cannot accomplish the same thing with

sigprocmask(...);

sleep(...);

• There’s a race condition — what if the signal occurs between the two
statements?

Steven M. Bellovin February 1, 2006 33



Race Conditions

sigprocmask(...);

Signal occurs
sleep(...);

Never wakes up

sigprocmask(...);

sleep(...);

Signal occurs
Process awakened by signal

Correct behavior here depends on which event occurs first. Testing is
unlikely to find the flaw, since it’s possible but improbable. To avoid race
condition problems, you need to rely on atomic operations, such as
sigsuspend()

Steven M. Bellovin February 1, 2006 34



Signals and Processes

• Signal state is inherited by child processes

• Signal state is partially preserved across exec() calls:

– Ignored signals remain ignored

– Caught signals are reset to default action

• Forgetting about ignored signals can cause problems for child
processes. (I have a script that resets the action for six different
signals before running gv — I sometimes need this with my browser.)

Steven M. Bellovin February 1, 2006 35



Signals and Threads

• Signal handlers are shared among all threads in a process

• Each thread can have its own signal mask

• If a signal occurs, it’s randomly sent to a single thread that doesn’t
block it

Steven M. Bellovin February 1, 2006 36



Signals and Interrupts

• Unix signals are the closest thing to hardware interrupts that you see
in application programs

• Dealing with them can be just as messy. . .

• Issues include race conditions, blocking signals, reentrancy, and more

Steven M. Bellovin February 1, 2006 37


