
Cryptographic Hash Functions
A cryptographic hash function has the same properties as ordinary hash functions: it is
easy to compute, takes an arbitrarily long input string (or file), and it produces a
random-looking, fixed-length, output string. For example, the most common hash
function used today, SHA2-256, outputs 256 bits (32 bytes), no matter the length of the
input.

For example, the SHA2-256 hash of the previous paragraph is:

766c8486ceab57ef792b8c0ad9c97a4f375430410a327adeea5c260f6579683e

in hexadecimal.
1

However, cryptographic hash functions have three additional properties with specific
names:

Collision resistance: It is effectively impossible—a more precise phrase is
“computationally infeasible”—to generate two different files whose hash value is the
same.

Preimage resistance: Given a randomly chosen hash value, it is computationally
infeasible to find an input string whose hash is that value.

Second preimage resistance: Given a file and hence its hash value, it is
computationally infeasible to find a different file that will have the same hash value.

By “computationally infeasible”, I mean that it is not possible to try enough different
values, probably ever. Consider a 33-byte string. There are clearly more 33-byte strings
than there are 32-byte strings; thus, there must be collisions: there have to be some
pairs (or larger groups) of input strings that have the same 32-byte hash. However, you
can’t possibly try all possible 33-byte strings; there are far too many of them. The
proper time unit for how long this calculation would take is measured in lifetimes of the
solar system…

Why is this important? In means that, in essence, every file has a unique hash value,
which is why a file’s hash is sometimes called its “fingerprint”. For all practical
purposes, a file’s hash uniquely identifies the file. Now: consider child pornography.
Child porn images are contraband: it is illegal to possess them. Calculating the hash of,
say, every uploaded file and comparing it to a list of hashes of known contraband
images will, with extraordinarily high probability, only identify such illegal files, with far
higher accuracy than the drug-sniffing dog in Illinois v. Caballes, 543 U.S. 405 (2005).

So: if this scheme only detects contraband, would a government mandate for
Facebook or Gmail to perform such a check be constitutional? (Effectiveness is

 Hexadecimal is base 16; the digits are 0–9 and A–F. Programmers generally use hexadecimal 1

to represent binary values for compactness, readability, and the ease of conversion: every four
binary bits are represented as exactly one hexadecimal digit.

another question, since a change to the value of a single bit of the file would
completely change its hash value.)

Now imagine that someone has stolen a digital copy of a highly sensitive U.S.
intelligence document, and that the government wants Facebook and Google and
other communications providers to search all files transmitted over their systems for
the hash of the file. Would this be constitutional without a warrant? Would it be
constitutional with a warrant? (This is a modified version of a hypothetical asked by
Professor Jonathan Zittrain at a very entertaining Socratic dialogue here.)

Bonus question: There is a technique known as a Bloom filter that permits extremely 2

efficient search to see if a given value is in a set, e.g., a set of hashes of known
contraband files. However, Bloom filters can produce false positives—they can claim
that something is in the set when it isn’t. You can adjust your Bloom filter to any
probability you wish of a false positive, and thus make them very rare. Assuming that
comparing a file’s hash with a list of hashes of known contraband is permissible under
the Fourth Amendment, is using a Bloom filter permissible, since it can have errors?
How rare would such errors have to be to make such searches acceptable?

 If you want the technical details: B. H. Bloom, Space/Time Trade-Offs in Hash Coding with 2

Allowable Errors, 13 Communications of ACM 422 (Jul. 1970).

https://youtu.be/ZIqM_qtFe80

