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What is Artificial Intelligence (AI)?

• You know what artificial intelligence (AI) is—computer programs that “think” 
or otherwise act “intelligent”
• The Turing test?

• What is “machine learning” (ML)?
• It’s simply one technique for AI—throw a lot of  data at a program and let it figure 

things out

• What are “neural networks”?
• A currently popular technique for ML

ai2



AI is Old

• Artificial intelligence is one of  the oldest non-numerical uses of  
computers
• (Of  course, today it does use numeric techniques)

• Turing discussed AI in 1950

• 1956 goal: machine translation
• Context: the Cold War, and the consequent need to translate Russian 

documents
• (“The vodka was good but the meat was rotten”)
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No One Knew How to Do AI…

• Early attempts at emulating the brain failed
• No one really knew how the brain worked

• Instead, researchers said, “An intelligent being can do X. We’ll try to 
do X by computer and say that that’s AI research”

• So: chess-playing, vision, natural language comprehension, and more

• None of  these, as done by computers, are really related to the general problem!
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How Does ML Work?

• Lots of  complicated math

• Not the way human brains with human neurons work

• To us, it doesn’t matter—we’ll treat it as a black box with certain properties
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How ML Works

• You feed the program a lot of  training data

• From this training data, the ML algorithm builds a model of  the input

• New inputs are matched against the model
• Examples: Google Translate, Amazon and Netflix’s recommendation engines, speech 

and image recognition

• However—machine learning algorithms find correlations, not causation
• It’s not always clear why ML makes certain connections
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Correlation versus Causation
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Training Data

• Training data must represent the desired actual input space

• Ideally, the training records should be statistically independent

• If  you get the training data wrong, the output will be biased

• To understand or evaluate the behavior of  an ML system, you need the code and
the data it was trained on
• “Algorithm transparency” alone won’t do it
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Biased Data

• Suppose you want an ML system to evaluate job applications

• You train it with data on your current employees

• The ML system will find applicants who “resemble” the current work force

• If  your current workforce is predominantly white males, the ML system will select white 
male applicants and perpetuate bias
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Learning Styles

Supervised

• A human labels the training data 
according to some criteria, e.g., spam or 
not spam

• The algorithm then “learns” what 
characteristics make items more like 
spam or more like non-spam

Unsupervised

• Finds what items cluster together

• Useful for large datasets, where there is 
no ground truth, or where labels don’t 
matter

• What counts is similarity
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Supervised: Image Recognition

• Feed it lots of  pictures of  different things

• Label each one: a dog, a plane, a mountain, etc.

• Now feed it a new picture—it will find the closest match and output the label
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Unsupervised Learning

• Feed in lots of  data without ground truth

• The algorithms find clusters of  similar items; they can also find outliers—items 
that don’t cluster with others

• They can also find probabilistic dependencies—if a certain pattern of  one set of  
variables is associated with the values of  another set, a prediction can be made 
about new items’ values for those variables
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Training is Context-Dependent

• Does “white” cluster with “red”, “green”, “blue”, etc., as a color?

• Does it cluster to “beige”, “ivory”, “ecru”, etc., as a very pale shade?

• Does it cluster with “Black”, “Asian”, etc., as a racial category?

You cannot take a training dataset from one context and use it in another

ai13



Training is Culture-Dependent

• Think of  the different words used in U.S. versus British English
• Apartment versus flat

• Truck versus lorry

• Shot versus jab

• There can even be completely opposite meanings for some words: consider 
tabling a bill in Congress versus in the House of  Commons

Conclusion: be careful whom you hire to label things
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Recommendation Engines

• To recommend things to you, Amazon, Netflix, YouTube, etc., do not need to 
know what you buy or watch

• Rather, they just need to know that people who liked X also tended to like Y and 
Z.

• This is a classic example of  unsupervised learning
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Why Use ML 
Image Recognition?
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Why Use ML
Image Recognition?
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Why Use ML
Image Recognition?
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ML Can Spot Features You Miss
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Medical Imagery

• ML-based image recognition is being tried out on medical images: X-rays, MRIs, 
etc.

• In some trials, it’s been as good or even better than radiologists

• And: computers don’t get tired, don’t get bored, and don’t get distracted

ai20



Today’s Uses

• Machine translation

• Speech recognition

• Computer vision

• Some search engine features

• A lot of  self-driving car software

In the past, all of  these things were attempted by dedicated code, which didn’t work nearly as 
well
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Training Image Recognition

• Ever wonder why so many of the 
CAPTCHAs are relevant to drivers?

• That’s right—you’re helping to train an ML 
algorithm
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Merging Data Sources

• There are many sensors, not just visual light cameras

• They differ in resolution, coverage, timing, etc.

• Imagine: satellite photos in different wavelengths, airborne side-looking radar, 
weather, temperature, etc.

• ML algorithms can treat these as multiple variables and make inferences without
actually merging them
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Computer Security

• Train your ML system on normal, unhacked data

• Have it look, in real-time, for deviations; flag them as possible security incidents

• Known as “anomaly detection”; used for network traffic, host behavior, virus 
detection, etc.
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The Good News

• ML has made incredible progress in the last very few years

• Things that had been very hard research problems are now routine

• There is every reason to expect continued rapid progress
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Things Change Rapidly!

September 2014 Google Images, Today
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The Full Picture
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S

However…
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There Are Issues

• Training Data Is Hard

• Output is Probabilistic

• Adversarial machine learning

• There are important “big data” situations where ML cannot help
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Adversarial Machine Learning

• Computers do not “see” the way we do

• Imperceptible or irrelevant—to us!—changes to an image can drastically change 
the results
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100% Successful Attack
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Biased Sources

• Training data that doesn’t represent actual data

• Cultural biases by the trainers 
• Mechanical Turk workers are often used for labeling

• False positives and false negatives
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Finding Terrorists

• There are very, very few terrorists

• Where are you going to find enough training data?

• Almost certainly, any features the real terrorists have in common will be matched 
by very many other innocent people

• The algorithms can’t distinguish them
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Finding Terrorists

• There are very, very few terrorists

• Where are you going to find enough training data?

• Almost certainly, any features the real terrorists have in common will be matched 
by very many other innocent people

• The algorithms can’t distinguish them

• When humans do this, we call it profiling
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S

ML Doesn’t Always Work 
the Way We Want it To…
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Some Examples

• Microsoft Tay

• Recidivism risk

• Targeted advertising

• More…
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Microsoft Tay

• A Twitter “chatbot”

• Tay “talked” with people on Twitter

• What people tweeted to it became its training data

• It started sounding like a misogynist Nazi…
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What Happened?

• People from 4Chan and 8Chan decided to troll it.

• With ML, vile Nazi garbage in, vile Nazi garbage out

• Microsoft didn’t appreciate just what people would try.

• “Sinders is critical of  Microsoft and Tay, writing that ‘designers and engineers 
have to start thinking about codes of  conduct and how accidentally abusive an AI 
can be.’” (Ars Technica)
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Recidivism

• Several companies market “risk assessment tools” to law enforcement and the 
judiciary

• Do they work? Do they exhibit impermissible bias?

• A ProPublica study says that one popular one doesn’t work and does show racial 
bias: Blacks are more likely to be seen as likely reoffenders—but the predictions 
aren’t very accurate anyway
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What Happened?

• Inadequate evaluation of  accuracy

• Using the program in ways not intended by the developers

• Proxy variables for race

• Using inappropriate variables, e.g., “arrests” rather than “crimes committed”

ai40



Hypertargeted Advertising

• It’s normal practice to target ads to the “right” audience

• ML permits very precise targeting—others can’t even see the ads

• Used politically—some say that YouTube’s recommendation algorithms helped 
Trump
• The Trump campaign used precise targeting on Facebook

• Target managed to identify a pregnant 16-year-old—her family didn’t even know
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Target

• People habitually buy from the same stores

• They tend to switch only at certain times, e.g., when a baby is born

• Target analyzed sales data to find leading indicators of  pregnancy

• They then sent coupons to women who showed those indicators

• People found that creepy—so Target buried the coupons among other, untargeted 
stuff  that they didn’t really care if  you bought
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Algorithmic Transparency

• There have been calls for “algorithmic transparency”—make companies disclose 
their algorithms

• It can help a little, in that it will show what variables are being used

• But—it’s not just the code, it’s the data
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Data Transparency?

• The training data is often far more sensitive than the code
• It can be a matter of  user privacy

• In some systems, the model is continuously updated

• Example: when you click on a link on a Google results page, the link actually 
takes you to Google, so it can tell what you clicked on

• But what can we do?
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The New York City Initiative

• A task force will develop:
• Appeal procedures for people affected by city ML systems

• Methods to look for bias

• A procedure to provide redress for people discriminated against

• Recommendations for transparency of  operation

• Procedures to archive code and training data
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Will it Work?

• It can, up to a point. However…

• Explaining why an ML algorithm gave a particular answer is hard

• Code is often vendor-proprietary

• Training data is often sensitive

• But at least the city recognizes the issue
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What Should We Do?

• Awareness is key

• Get competent data scientists to study each system, to look at data sources, 
proxies, code, etc.
• Require vendors to make code available to city-designated experts

• Above all: social policy has to come first, and be set by political processes; code 
has to follow that policy
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Questions?

(Osprey with fish, Central Park, September 29, 2021)


