
Web Security 2

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Databases

Most real web sites are based on databases
Often, what’s of most value is those databases—how can they be
protected?
It takes careful design

Web Security 2 2 / 46

Danger Scenarios

Web server is penetrated via the web interface

R A realistic threat, and difficult to defend against
Web server is penetrated some other way from the outside

R Firewall other ports
Web server is penetrated from the inside of the company

R Internal firewalls and more

Web Security 2 3 / 46

Solution 1: The Same Machine

Put the database on
the same computer
Communicate via local
RPC

Web
Server

Database

Server

Web Security 2 4 / 46

Solution 2: Separate Machines

Put the database on a
separate computer
Communicate over the
network

Web
Server

Database

Server Server

Web Security 2 5 / 46

Analysis

No difference for inside or outside attacks
Firewalling still helps
But what about web server penetration?
As noted, it’s hard to defend against

Web Security 2 6 / 46

Web Server on the Same Machine

If a web script is buggy, the web server can fall
Get to a shell and steal the entire database that way!
Partial defense: use separate userIDs for the web server and database,
plus set restrictive file permissions
But: what about local privilege escalation attacks?
But: the web server must have a password to the database

Web Security 2 7 / 46

Separate Machines

Local shells don’t help the attacker
Much better protection
But: the web server still must have
a password to the database

R Separate machines help (especially
if you do good logging and
intrusion detection), but it’s a
dangerous situation
Query: must those be separate
physical machines, or would two
VMs suffice?

Web
Server

Database

Virtual
Server

Virtual
Server

VM Host

Web Security 2 8 / 46

More Generally. . .

Use separate computers and/or separate userIDs for different functions
Example: the Apache server is owned by one userID, the content it serves
is owned by another user, and the TLS private key is only readable by root

Why?

Web Security 2 9 / 46

Separation of Privileges

Suppose the server is compromised
The attacker cannot overwrite the executable
The attacker cannot steal the secret key
You can protect read-only data by making it not writable by the execution
userID

Web Security 2 10 / 46

Shedding Privileges

Apache starts as root

Note: it must be invoked by root

It opens the socket and some log files, then forks and sheds privileges
Serving web pages is done as non-privileged user “www”

Web Security 2 11 / 46

File Permissions

If the web server isn’t root, it can’t open protected files
All pages served must be readable by the web server
Don’t make them owned by www; that way, a compromised web server
can’t overwrite them
In other words, the web server itself has as few privileges as possible

Web Security 2 12 / 46

Design Philosphy

Use the OS to protect the system against the web server
Assume the web server can enforce its own access control mechanisms

Web Security 2 13 / 46

Can We Lock Things Away?

There is a certain set of files that we want the browser to be able to read
Most of the files on the system are not in that set
Can we configure things to prevent www from reading or writing them?
Alas, that isn’t easy.

Web Security 2 14 / 46

What About Browsers?

Web servers are subject to lots of attacks
Apart from the ones mentioned, the servers themselves may be buggy
That problem affects browsers, too—and it some ways, it’s worse
To understand the problem, we need to understand the architecture of
today’s web

Web Security 2 15 / 46

Web Pages

Web pages are composed of
separate elements: the main HTML
file, CSS pages (styling
information), JavaScript pages,
“frames”, and more
Each element has its own URL
These URLs can point to different
sites
Translation: you don’t know where
parts of the page are actually
coming from

Web Security 2 16 / 46

Ads and Ad Brokers

Many commercial sites contain ads
Where do these ads come from?
Very few sites host ads themselves
In fact, they don’t even know what ads are being shown
They rely on ad brokers

Web Security 2 17 / 46

Ad Brokers and Frames

A frame is a separate web page within a page
Each ad location on a page contains a URL pointing to an ad broker
(These URLs often contain embedded information to help target the ad, a
privacy issue)
The ad broker effectively auctions the slot (possibly to another ad broker)
and issues a Redirect response
The Redirect response sends the browser to a new, completely different
URL, often hosted by the advertiser
Neither the user nor the site they want to visit know where the ads will
come from—nor who is responsible for their content

Web Security 2 18 / 46

Hacking by Advertising

Suppose some group knows of a hole in, e.g., a JPG library
They buy an ad from an ad broker pointing to an infected image
They won’t pay much in the auction, so their ad won’t be seen by that
many people—which helps hide it
Many people viewing that ad (or the image within it) will be infected
Bonus: pick sites, targeting information to infect people in a certain group

Web Security 2 19 / 46

Cookies and Logins

Conceptually, the web is “stateless’
As mentioned, every HTTP transaction is independent—the connection
between browser and server is closed after each download
How do you log in? Where is your shopping cart kept?
The answer: cookies

Web Security 2 20 / 46

What is a Cookie?

A cookie is a small text string sent by a web site to a browser
When the browser returns to that site, it sends back that string
That string can contain the login
Note well: the cookies is returned every time you visit that site
(To see how cookies work, connect to
http://greylock.cs.columbia.edu—I’ll leave it up for a few days after
the class)

Web Security 2 21 / 46

http://greylock.cs.columbia.edu

Usage of “Cookie”

“Cookie” refers to an opaque value that is sent by one party to another, to
be returned to it later
Cookies have no intrinsic meaning and cannot (safely) be manipulated

Web Security 2 22 / 46

The 7th Edition Unix Manual, 1979

Web Security 2 23 / 46

Stealing Cookies: Cross-Site Scripting (XSS)

Again: any time you visit a site, your cookies for that site are uploaded
This is how you stay logged in to Google, Facebook, etc.
(It’s also how they track you across the web. . .)
Suppose you’re logged in to your bank—and an attacker injects a script
that goes to your bank and does nasty things
How?

Web Security 2 24 / 46

User-Generated Content

Many sites allow user-generated content: user profiles, comment fields,
chat rooms, etc.
Some sites allow HTML formatting in such content:

I think that...

What if there is JavaScript instead?
<script>

(nasty, evil JavaScript)
</script>

It won’t be displayed. It will be executed by the user’s browser, and can
vist the bank as that user
Defense: web sites must sanitize all user-supplied content—and that isn’t
easy

Web Security 2 25 / 46

Related: Cross-Site Request Forgery (CSRF or XSRF)

The attacker crafts a single nasty URL
This is sent to the victim’s browser in a way that the user will load it
automatically
One way: as an ad. . .

Web Security 2 26 / 46

Brower-Side Execution

Web servers can send clients code to execute
Today, that’s JavaScript; in the past, it was also Java and Flash
Is that safe?
Not really. . .

Web Security 2 27 / 46

Safeguarding Execution

The Halting Problem tells us that it is impossible to know if an executable
is malicious or not
The only possible approaches are to construct an inherently safe language,
one that can’t possibly do evil things, or to monitor and block bad
operations when they occur
Java and Flash interpreters have proven to be too buggy
Besides, other technologies, e.g., more powerful JavaScript and HTML 5,
have replaced them

Web Security 2 28 / 46

JavaScript

JavaScript is marketed as a general-purpose programming language
It is, but it is unclear that it has many advantages over other languages
Its primary use: much faster, lower-overhead interactivity in web pages
But: in the past, there have been security holes; today, there are often
privacy issues related to browser fingerprinting

Web Security 2 29 / 46

Privacy: Web-Tracking

Suppose you click on a “Share with Twitter” link on a web page
That request goes to Twitter, along with your Twitter login cookie
There is also a Referer: headre that tells Twitter what page you were
coming from
This implements tracking
(Google owns Doubleclick, one of the largest ad brokers on the web; they
use this to see what ads you click on and what pages you visit. Also:
Google Analytics.)

Web Security 2 30 / 46

Web Site Logins

Many sites require user logins
Ergo, must maintain login and password files
Passwords must, of course, be salted and hashed for storage
Always put this in a separate database on a separate machine
Restricted queries to limit risk if the web server is compromised
First operation on all non-login pages: check for a valid logged-in cookie

Web Security 2 31 / 46

Storing Credentials

Legal queries:
“Is 〈user, pw〉 valid?”
“Add 〈user, pw〉”
“Delete 〈user, pw〉”
“Generate password reset URL for
〈user〉”
“Reset credentials to 〈user, pw〉”

All but the first should be done from a
separate web server—why?
How are some of these requests
authenticated?

Web
Server

User
Database

Authentication
Server

Login
Server

Web Security 2 32 / 46

Resetting Passwords

You must have a mechanism for handling lost credentials
Don’t send password reminders—to do that, you’d need to have a
cleartext version of the password
Secondary authentication questions are weak—and answers are often
public or guessable

R That’s what happened to Sarah Palin’s email account

Web Security 2 33 / 46

Outsourcing Login Security

Handling logins and passwords is complex
Many sites outsource this: you log in with your Google, Facebook, or
Twitter credentials
These sites provide that facility because it lets them track users—useful
for advertisers. . .

Web Security 2 34 / 46

Browser Security: A General Solution?

There are many dangers to browsers: executables, buggy code, tracking,
etc.
We were able to provide more server security by using OS features—can
we do the same here?
Yes, but it’s not easy

Web Security 2 35 / 46

Sandboxing

Let part of a program run with fewer privileges
Feature of all modern operating systems
The hard part: separating the dangerous stuff from stuff that needs full
privileges
(More details later in the term)

Web Security 2 36 / 46

Splitting a Browser

Unsafe: rendering pages, executing JavaScript
Must support: saving pages, downloading files, mailto: URLs, clicking on
links in other applications
Where do cookies live?
Do we try to sandbox sites from each other, to protect cookies?

Web Security 2 37 / 46

Protecting Cookies

A login cookie is sent from the server to the browser
The user controls the browser—how does the server know it comes back
intact?
That is: suppose that to user does not treat it as an opaque string, but
manipulates it—can trouble occur?
Sure—so we have to protect it

Web Security 2 38 / 46

Protecting Cookies: Method 1

Generate a key on the server and encrypt the cookie
Include an integrity check
Any modification will change the integrity value, so a damaged cookie can
be rejected
You’d think that big companies would understand this, but in 2015 or
2016, “an unauthorised third party accessed [Yahoo’s] proprietary code to
learn how to forge certain cookies”

Web Security 2 39 / 46

Protecting Cookies: Method 2

Store all data server-side
Make the cookie a cryptographically strong random number that is only
used to find the table entry
Changing the cookie will simply result in “data not found” and the user will
be asked to log in
“Cryptographically strong”: unpredictable by an attacker, i.e., at least 128
bits and generated by a secure PRNG

Web Security 2 40 / 46

Protect All Client-Side Data

Some software packages store the contents of the user’s shopping cart in
cookies or other browser-side places
Does this include prices? Sometimes it does—and people can manipulate
these prices
Or: include a negative quantity, to offset the cost of items you do want

Web Security 2 41 / 46

Input Validation

Many web sites need to validate data, e.g., a certain field must be all
numerica
Often, this is implemented client-side, to provide faster feedback to the
user
Servers can’t trust this!
The user—that is, the attacker—controls the client

Web Security 2 42 / 46

Unsafe URLs

URLs are a bad place to put sensitive information, e.g., passwords
URLs are logged, which means that the passwords you properly salt and
hash are exposed
Watch out for guessable userIDs, too
AT&T once got this wrong—and someone was able to enumerate the space
of iPad userIDs

Web Security 2 43 / 46

Other Modern Complexities

Content distribution networks—must ship your content to such sites
TLS front ends—better for protecting keys, but traffic is then unencrypted
after the front end
Multiple web sites on a single host—how do you protect them from each
other?

Web Security 2 44 / 46

Web Security

Web security is hard
I’ve just given the high-level architecture
There are many details that matter, e.g., configuration files and file
permissions

Web Security 2 45 / 46

Questions?

(Barred owl, Central Park, October 11, 2020)

