
TLS; Web Security 1

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

TLS Architecture

TLS; Web Security 1 2 / 55

TLS

There are several versions of TLS—we’ll discuss 1.3, the newest
There are many variations, options, etc.; we’ll stick with the main flow

TLS; Web Security 1 3 / 55

Data Flow

Certificate

Client Server

Client Hello

Server Hello

Finished

TLS; Web Security 1 4 / 55

Structure

Handshake protocol
Negotiate version
Negotiate encryption parameters
Authenticate the connection
Create a session key

Record layer
Send messages rather than TCP’s simple byte stream
Encrypt each message
Authenticate each message
Detect tampering

TLS; Web Security 1 5 / 55

Messages

Client Hello

Version

Random

Cipher Suites

Key Share

Extensions

Encryption
Parameters

Server Hello

Version

Random

Cipher Suites

Key Share

Extensions

Encryption
Parameters

Certificate (optional)

Verification

Extensions

Application Data

Encrypted

Finish

Certificate (optional)

Verification

Application Data

Encrypted

TLS; Web Security 1 6 / 55

Client Hello

Random bytes for session key generation
An offered set of cipher suites
A Diffie-Hellman exponential
Optional fields

TLS; Web Security 1 7 / 55

Server Hello: Plaintext

Random bytes for session key generation
The selected cipher suite
A Diffie-Hellman exponential

TLS; Web Security 1 8 / 55

Server Hello: Encrypted

Certificate
Digital signature on everything it has sent
Optional fields
Application data—but the client has not yet authenticated its side

TLS; Web Security 1 9 / 55

Finish

Optional certificate
Digital signature on everything it has sent
Application data

TLS; Web Security 1 10 / 55

Many More Options

Session resumption
Putting a password (“pre-shared key”) in the encryption parameters
exchange
No certificates in either direction
Simpler (but slightly less secure) key setup
Downgrade protection
More. . .

TLS; Web Security 1 11 / 55

Surveillance Protection

Note the two Diffie-Hellman exponentials
They allow encryption to start—between unauthenticated parties—before
either side identifies itself
Certificates are sent after encryption has started
The protection is imperfect—but it’s often good enough

TLS; Web Security 1 12 / 55

Passive Attackers

Can eavesdrop on traffic
Example: tap fibers (yes, that’s
possible) or hack into other
devices
Does not modify traffic in any
way
Completely blocked by
unauthenticated Diffie-Hellman

Internet

Server

Passive

Attacker

TLS; Web Security 1 13 / 55

Active Attackers

Reroutes traffic
Can play monkey-in-the-middle
with unauthenticated
Diffie-Hellman:

A→ E : grA mod p
E→ A : grE1 mod p
E→ B : grE2 mod p
B→ E : grB mod p

E then calculates grArE1 mod p and
grE2 rB mod p and relays data
between A and B, recording it all
But: the verification step will
catch this

Internet

Active

Attacker

Server

TLS; Web Security 1 14 / 55

Server Name Indication

Many web servers, especially those run by hosting companies, contain
multiple web sites
Each such web site needs its own certificate
The client can indicate which site it wants in a Hello message extension,
but that is not encrypted—and is visible to censors
There is work being done to encrypt this, but it’s hard

TLS; Web Security 1 15 / 55

Using TLS

TLS; Web Security 1 16 / 55

Using TLS

There are many different TLS implementations—Microsoft has its own,
Apple has its own, and there are several open source implementations,
notably OpenSSL
The complexity of the protocol means that implementations cannot be
simple
The APIs cannot be simple, either
But there are some common concepts

TLS; Web Security 1 17 / 55

Negotiation

There are things that have to be negotiated, e.g., TLS version and cipher
suites
This means that the applications on either end have to supply their lists
In many situations, e.g., web servers, site administrators have to be able
to control this—which means that the application programmers have to
honor their wishes and not rely on defaults
Example: when there was a new attack on RC4, web sites needed to
disable it before a new release of the software

TLS; Web Security 1 18 / 55

Options

TLS has more than 20 options
Most aren’t used most of the time—but the API has to allow their use
Again, this is unavoidable complexity

TLS; Web Security 1 19 / 55

The Record Layer

TLS programs can’t just write to and read from a network socket
Instead, messages need to be encrypted when being sent, and decrypted
and verified on receipt
The TLS record layer does this—but this means that applications need to
speak to it, too

TLS; Web Security 1 20 / 55

Contexts

OpenSSL uses contexts for the encryption layer and the record layer
(We saw this concept in SHA2-256)
In an object-oriented language, each context would be an instantiation of
a class—but C isn’t object-oriented, so they’re simply structs
It is necessary to link the encryption context and the record layer context

TLS; Web Security 1 21 / 55

Example Setup

const SSL_METHOD* method = TLSv1_2_client_method();
if (NULL == method) report_and_exit("TLSv1_2_client_method...");

SSL_CTX* ctx = SSL_CTX_new(method);
if (NULL == ctx) report_and_exit("SSL_CTX_new...");

BIO* bio = BIO_new_ssl_connect(ctx);
if (NULL == bio) report_and_exit("BIO_new_ssl_connect...");

From
https://opensource.com/article/19/6/cryptography-basics-openssl-part-1

TLS; Web Security 1 22 / 55

https://opensource.com/article/19/6/cryptography-basics-openssl-part-1

The Web PKI

TLS; Web Security 1 23 / 55

Trust Anchors

Recall that certificates are ultimately issued by a CA
There isn’t The One True Certficate Authority for all possible uses
TLS programs that use certificates have to supply the proper root
But for the web, it’s more complicated than that. . .

TLS; Web Security 1 24 / 55

The Web PKI

Who is the CA for the web?
There isn’t one! Rather, there are many
That causes problems. . .

TLS; Web Security 1 25 / 55

Why Are There Many Web CAs?

If there were just one, it would be
a single point of failure—and
control—for the entire web
As a matter of national policy,
some countries do not do not
want CAs for their organizations
to be in other countries
Even government web sites use
certficates from commercial CAs
Besides, it’s better to avoid
monopolies when possible

TLS; Web Security 1 26 / 55

It’s a Forest, Not a Tree

Conceptually, a PKI is a tree: the CA is the root, it can create multiple
intermediate CAs, they issue certificates, etc.
The web has multiple CAs, each of which is a tree
Any of these CAs can issue a certificate to any web site
Yes, that can cause problems

TLS; Web Security 1 27 / 55

Consistency Doesn’t Matter

TLS; Web Security 1 28 / 55

Who Picks these CAs?

Each browser or OS vendor
decides for itself which CAs to
trust
There’s a large, common set
Most follow the standards set by
the CA Browser Forum

TLS; Web Security 1 29 / 55

Misbehaving

What if a CA misbehaves?
Can it issue bogus certificates, when the real cert for a site was issued by
a different CA?
Yes!
It’s happened several times, e.g., the Comodo and DigiNotar hacks
Google designed a distributed cryptographic logging protocol (certificate
transparency) to detect such incidents

TLS; Web Security 1 30 / 55

Web Server Security

TLS; Web Security 1 31 / 55

Web Security: It’s Not Just Encryption

Encryption and certificates are very important
However, it’s far from the biggest issue, precisely because we’ve had SSL
and TLS since 1995
The bigger issues: configuration and code

TLS; Web Security 1 32 / 55

Web Server Architecture

Static files
Programs and scripts
Infrastructure
Generally, databases

R All can present issues

TLS; Web Security 1 33 / 55

Web Server Infrastructure

Several aspects
Configuration files
Certificates and keys
Log files
The server itself
Other executables
More. . .

Each of these have security implications
Protections vary

TLS; Web Security 1 34 / 55

Protecting Keys

The server’s private key is precious—must be protected
Primary desired property: confidentiality
One of the biggest risks to the key is the scripts that serve up pages
Solutions: HSMs or use of the operating system’s permission mechanisms
(More on that in a few weeks)

TLS; Web Security 1 35 / 55

Configuration Files

Primary desired property: integrity
These files control what the server will hand out; if they’re tampered with,
erroneous (or sensitive) files may be returned
Again, we must rely on the OS

TLS; Web Security 1 36 / 55

Log Files

Primary desired property: integrity
Log files are vitally important, both for normal operation, normal errors,
and intrusion analysis
For intrusion analysis, best to keep them on a separate computer—why?

So that a successful attacker can’t cover their tracks by erasing the log

TLS; Web Security 1 37 / 55

Log Files

Primary desired property: integrity
Log files are vitally important, both for normal operation, normal errors,
and intrusion analysis
For intrusion analysis, best to keep them on a separate computer—why?
So that a successful attacker can’t cover their tracks by erasing the log

TLS; Web Security 1 37 / 55

Serving Up Files

Conceptually, a web server returns elements of a tree
In fact, URLs appear to contain filenames
It is generally not a single subtree of the file system
Part of the web server configuration determines which file system
directories correspond to which part of the URL name space
Must be careful to offer only the proper files

TLS; Web Security 1 38 / 55

Programs and Scripts

All of that is the easy part of web security
What makes the modern web interesting is scripts: programs that consult
databases and generate web pages dynamically
Ensuring that these programs are correct is the hardest part of web
security
Why?

TLS; Web Security 1 39 / 55

Script Correctness

Web scripts run in an extremely hostile environment—they must be
exposed to the outside world and cannot be protected by firewalls
Attackers can send them arbitrary input
Program correctness is probably the hardest problem in computer
science—and every real web site has to run many such programs

TLS; Web Security 1 40 / 55

SQL Injection

Suppose a program is querying an SQL database based on valid userID
and query string:

snprintf(buf, sizeof buf, "select where user=\"\%s\" &&
query=\"%s\"", uname, query);

What if query is
foo" || user="root

The actual command passed to SQL is
select where user="uname" && query = "foo" ||

user="root"

This will retrieve records it shouldn’t have
Variants on this are one of the biggest causes of web site penetration

TLS; Web Security 1 41 / 55

SQL Injection

Suppose a program is querying an SQL database based on valid userID
and query string:

snprintf(buf, sizeof buf, "select where user=\"\%s\" &&
query=\"%s\"", uname, query);

What if query is
foo" || user="root

The actual command passed to SQL is
select where user="uname" && query = "foo" ||

user="root"

This will retrieve records it shouldn’t have
Variants on this are one of the biggest causes of web site penetration

TLS; Web Security 1 41 / 55

SQL Injection

Suppose a program is querying an SQL database based on valid userID
and query string:

snprintf(buf, sizeof buf, "select where user=\"\%s\" &&
query=\"%s\"", uname, query);

What if query is
foo" || user="root

The actual command passed to SQL is
select where user="uname" && query = "foo" ||

user="root"

This will retrieve records it shouldn’t have
Variants on this are one of the biggest causes of web site penetration

TLS; Web Security 1 41 / 55

What Was Wrong?

The program was passing a string to the database
The enemy controlled part of the string
The program didn’t make sure that the substitution was safe

TLS; Web Security 1 42 / 55

Exploits of a Mom

(From https://xkcd.com/327/)

TLS; Web Security 1 43 / 55

https://xkcd.com/327/

Invoking Programs

The same sort of thing can happen if external programs are invoked
Contrast

snprintf(buf, sizeof buf, "ls %s", dirname);
system(buf);

with
execl("/bin/ls", "ls", dirname, NULL);

What is the difference?

The first example has the same problem as the SQL statement

TLS; Web Security 1 44 / 55

Invoking Programs

The same sort of thing can happen if external programs are invoked
Contrast

snprintf(buf, sizeof buf, "ls %s", dirname);
system(buf);

with
execl("/bin/ls", "ls", dirname, NULL);

What is the difference?
The first example has the same problem as the SQL statement

TLS; Web Security 1 44 / 55

Filename Parsing

User supplies pathname; application must check for validity
Administrator specifies list of accessible files and/or directories
Sometimes, wildcards—*, ?, and more—are permitted
Application must parse supplied filename
Remarkably difficult

TLS; Web Security 1 45 / 55

The “..” Problem

Attackers try to get at other files
Simplest attack: put .. in the path
http://example.com/../../../../etc/passwd

The .. can occur later:
http://example.com/a/b/../../../../etc/passwd

If directory /dir is legal, what about /dir/../dir/file? Do you want to
count levels?
Watch out for /dir///../../file—replicated /’s counts as a single one
Note that /foo..bar/bletch is legal
This problem has been known for about 40 years—and I still see it pop up
every year or two

TLS; Web Security 1 46 / 55

http://example.com/../../../../etc/passwd
http://example.com/a/b/../../../../etc/passwd

URL Syntax Issues

Example: in URLs, %xx can specify two hex digits for the character. %2F is
the same as /

When is that expanded?
How is /foo%2F..%2Fetc/passwd processed?

TLS; Web Security 1 47 / 55

Unicode

Standard for representing (virtually) all of the world’s scripts
R There are proposals for Klingon and Tengwar (“Elvish”) codepoints
Many problems!
Some symbols look the same, but have different values: ordinary
/—technically called “solidus”—is U+002F, but U+2044, “fraction slash”,
looks the same
“Combining characters” and “grapheme joiners” make life even more
complicated. Thus, á can be U+00C1 or the two-character sequence
U+0041,U+0301
Comparison rules have to be application-dependent—and watch out for
false visual equivalences; these have already been used for attacks,
especially with Cyrillic domain names

TLS; Web Security 1 48 / 55

Cyrillic Homograph Attack on “Paypal”

Glyph Unicode value in Cyrillic
P U+0420
a U+0430
y U+0443
p U+0440
a U+0430
l U+006C (ASCII)

TLS; Web Security 1 49 / 55

Access Control

Many different forms
Many different types of authentication
Many interactions

TLS; Web Security 1 50 / 55

Explicit Access Control

Access control lists settable by the webmaster for any directory tree
Passwords or certificates can be configured as well
Permission can be granted or withheld based on client IP address
If a directory has no index.html file, should the web server just list its
contents?
Applications can do their own authentication and access control
All of these interact; combinations can be used

TLS; Web Security 1 51 / 55

A Sample Configuration

Here is a .htaccess file for a directory:

<Files *>
AuthUserFile /home/smb/pwdir/.htpasswd
AuthGroupFile /dev/null
AuthName "File Access"
AuthType Basic
Require valid-user

</Files>

The string File Access is displayed to the user. Logins and passwords are
stored in /home/smb/pwdir/.htpasswd.

TLS; Web Security 1 52 / 55

Web Authentication

A web password file:

user1:eO3rzWPNjjZFo
user2:CqkaeLJSVcRpI

TLS; Web Security 1 53 / 55

That’s Rarely Used—Why?

No site-specific display
No error recovery, e.g., a link for “I forgot my password”
Too restrictive—no good option for partial display, e.g., of a news article
A simple linear file doesn’t scale up very well
Web sites generally implement their own authentication

TLS; Web Security 1 54 / 55

Questions?

(Great blue heron, Morningside Drive, February 16, 2020)

	TLS Architecture
	Using TLS
	The Web PKI
	Web Server Security

