
TCP/IP Issues

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


A TCP/IP Tutorial

TCP/IP Issues 2 / 42



What is TCP/IP?

Fundamental networking protocols of the Internet
TCP: Transmission Control Protocol (RFC 793, September 1981)
IP: Internet Protocol (RFC 791, September 1981)
There have been improvements, but the fundamental architecture remains
N.B.: HTTP/HTTPS have an outsize role; more on this later
We’ll start with a brief, simplified overview of TCP, covering only the parts
necessary for this class

TCP/IP Issues 3 / 42



Design Goals

Support many applications—most older networks had baked-in (and
limited) applications
Support many kinds of networking hardware—most older networks were
tied to particular link types
Support many different operating systems—most older networks were
vendor-proprietary
No central core network

TCP/IP Issues 4 / 42



What’s a Network?

A network is two or more hosts
on a common medium
Example: Ethernet (many
hosts), point-to-point fiber (two
hosts)
The Internet is sometimes
called a catenet: multiple
networks joined together
Networks are connected by
routers

Net A Net B

Net C

TCP/IP Issues 5 / 42



The Internet Architecture

Basic principle: “IP over
everything and
everything over IP”
Multiple applications use
multiple transport
protocols—but there’s
only one IP
IP speaks to multiple
network devices
Developed under DARPA
(Defense Advance
Reseach Projects Agency)
sponsorship; replacement
for the old ARPANET

The “Hourglass” Model

SMTP HTTP HTTPS FTP VoIP SSH . . .

ICMP TCP UDP . . .

IP

WiFi Ethernet Fiber . . .

TCP/IP Issues 6 / 42



The Network Stack

Application7

Presentation6

Session5

«

Unused in TCP/IP

Transport: TCP, UDP, etc.4

Network: IP3

Link: WiFi, Ethernet, etc.2

Physical: radio, fiber, etc1

TCP/IP Issues 7 / 42



The Real Network Stack?

Political9 ← YOU ARE HERE

Financial8

Application7

Presentation6

Session5

«

Unused in TCP/IP

Transport: TCP, UDP, etc.4

Network: IP3

Link: WiFi, Ethernet, etc.2

Physical: radio, fiber, etc1

TCP/IP Issues 8 / 42



Roughly Speaking

Application Does what you really want, e.g., web
TCP Presents a reliable byte stream to the applications

IP Gets packets from “here” to “there”
Link, Physical Deals with the hardware

TCP/IP Issues 9 / 42



The IP Service Model

The underlying networks provide a possibly unreliable “datagram” sevice
Unreliable: packets may be dropped, damaged, duplicated, reordered
Packets are forwarded to the next hop to their eventual destination—or
dropped if not deliverable
Packets may be dropped because of network congestion
Very little concern for the correctness of any packet
Stateless forwarding—what happens with a packet does not affect what
happens to the next packet
Note: this is the service model—implementations can behave differently to
optimize things if they wish

TCP/IP Issues 10 / 42



Datagram

A single message
No call setup required; every message contains a source and destination
Note: there are related terms: frame, packet, segment, etc. I’ll use packet
and datagram interchangeably for all of these concepts, but a networking
course would be more precise

TCP/IP Issues 11 / 42



IP: The Internet Protocol

0 4 8 16 31

Version
Header
Length

Service
Parameters

Length

Packet ID 0 D
F

M
F

Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

TCP/IP Issues 12 / 42



IP: The Internet Protocol

Version The originally deployed Internet Protocol was Version 4.
Version 6 is (very slowly!) being rolled out; I’ll say very
little more about it

Time to Live A hop count for packets, to prevent infinite forwarding
loops

Protocol The next protocol: TCP, UDP, etc.
Header Checksum Validate the correctness of the IP header and only the IP

header. Probably a mistake to have included it.
Source Address Where the packet came from

Destination Address Where it’s going
Other This isn’t a networking class; I won’t discuss them. . .

TCP/IP Issues 13 / 42



IP Addresses

IP addresses are 32-bit numbers (for IPv6, 128-bit)
They in fact have some structure, but that’s for a later lecture
Most IP addresses must be globally unique. Some (so-called “RFC 1918”
addresses) are for local use and are translated at the site boundary to a
global address

TCP/IP Issues 14 / 42

https://www.rfc-editor.org/info/rfc1918


A Network Diagram

�

��

��

�

���

���

���
��

��

��

��

���

���

��

���

��

���

TCP/IP Issues 15 / 42



Node A Talking to Node B

A process on host A wants to send a packet to host B
The IP layer on A examines the destination address and decides which
node (generally a router) is the best next hop
(How that decision is made will be covered in another lecture)
It asks its link layer to send the packet there
The next hop receives the packet via its IP layer. The IP layer either
accepts it locally (and sends it to TCP) or forwards it another hop
Eventually, it arrives

TCP/IP Issues 16 / 42



Talking to the Link Layer

Hosts are trying to send to IP addresses
Link layers often have their own, very different addresses: for Ethernet
and WiFi, these are 48-bit numbers. A mapping is necessary
The host sends a broadcast messsage using the Address Resolution
Protocol (ARP)
All nodes on the local network receive it; the proper receiving machine
replies with “here is my link-layer address”

TCP/IP Issues 17 / 42

https://www.rfc-editor.org/info/rfc826
https://www.rfc-editor.org/info/rfc826


The TCP Service Model

The purpose of TCP is to convert an unreliable set of packets to a reliable,
unstructured byte stream
That is: IP hands possibly-damaged packets to TCP. TCP handles ordering,
damage detection, and retransmission
TCP also separates IP packets into multiple connections
In other words: IP deals with unreliable datagrams; TCP produces a set of
reliable connections (sometimes call circuits)

TCP/IP Issues 18 / 42



TCP: The Transmission Control Protocol
0 8 16 24 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data
offset Reserved

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent pointer

Options, if any. . .

User Data (if any). . .

TCP/IP Issues 19 / 42



TCP: The Transmission Control Protocol

Source Port Part of the connection identifier
Destination Port Part of the connection identifier

Sequence Number The sequence number of the first data byte in this
packet

Acknowledgment Number The sequence number of the last byte succesfully
received

ACK The Acknowledgment Number field is valid
RST Reset this connection
SYN Technically, “synchronize sequence numbers”;

more intuitively, part of creating a connection
FIN “Finish”, i.e., start tearing down this circuit

Checksum Error detection—is this packet correct?

TCP/IP Issues 20 / 42



TCP Connections

A TCP server listens on a given port number
Most of the time, this is a “well-known”, i.e., standardized number: HTTP is
port 80, SMTP (for email) is port 25, HTTPS is port 443, etc.
(To a first approximation, you can tell what a connection is used for from
its server port number)
A TCP client is (generally) assigned a random, unused port number by the
kernel; it attempts to connect to a server by the server’s IP address and
port number
The 〈source address, source port, destination address, destination port〉 is
the connection identifier
Multiple connections can exist between a single pair of hosts: the client’s
port number will be different

TCP/IP Issues 21 / 42



Creating a TCP Connection

The client sends a packet to the server with the SYN bit set, saying “this is
the sequence number of my first byte”
This creates client-side state
The server’s reply has the SYN bit set (and “this is the sequence number of
my first byte”), the ACK bit plus an acknowledgment of the client’s initial
sequence number
Note that at this point, the server has to create state for this half-opened
connection
The client’s reply has only the ACK bit set, plus n acknowledgment of the
server’s initial sequence number
This is called the three-way handshake, which takes 1.5 round trips
The connection is not fully open until the server receives this last message

TCP/IP Issues 22 / 42



The Three-Way Handshake

SYN
(seq=XX)

SYN, ACK
(seq=YY, ACK=XX+1)

ACK
(seq=XX+1, ACK=YY+1)

Data
(seq, ack)

TCP/IP Issues 23 / 42



Error Handling by TCP

When TCP receives a packet, it validates the checksum
If the checksum is invalid, i.e., if the packet is damaged, it is silently
dropped
No, TCP doesn’t send negative acknowledgments
If the sequence number is for the next byte expected, the receiving
machine sends an ACK packet, probably with no data, but with an
acknowledgment number of the next expected byte
If there’s a “hole”, it silently saves the received packet until the hole is
filled
Senders wait a certain amount of time for acknowledgments. If they don’t
get one, the packet is retransmitted.

TCP/IP Issues 24 / 42



Error Handling Only in TCP

Why doesn’t the IP layer drop damaged packets?

IP could check (and many link layers do check)—but that’s redundant
TCP has to check anyway
UDP might not want a check–think OFB encryption
This is the end-to-end principle
Worth noting: because most links are very reliable (and many have their
own checksums), very, very few packets are dropped because of TCP
checksum issues

TCP/IP Issues 25 / 42



Error Handling Only in TCP

Why doesn’t the IP layer drop damaged packets?
IP could check (and many link layers do check)—but that’s redundant
TCP has to check anyway
UDP might not want a check–think OFB encryption
This is the end-to-end principle
Worth noting: because most links are very reliable (and many have their
own checksums), very, very few packets are dropped because of TCP
checksum issues

TCP/IP Issues 25 / 42



Closing a Connection

When one side is done sending data, it emits a FIN packet
This packet must be acknowledged by the other side—FIN bits count as
bytes in sequence number space
The other side must send an appropriate ACK packet
The connection is completely torn down when both sides have received
ACKs of their FIN bits
Until then, both sides have to retain state

TCP/IP Issues 26 / 42



Timeouts and Resets

When a host sends a packet and doesn’t receive an acknowledgment, it
waits a while and then retransmits it
If too long goes by, it can declare the connection dead and notify the
application
If a host receives a packet and there is no matching connection, it
immediately replies with a RST—reset—packet

TCP/IP Issues 27 / 42



Keep-Alives

Per the last slide, a host can only tell that a connection is dead if it tries to
send something that is never acknowledged
What if a server is waiting for client input but it never comes?
The server has to retain state the entire time!
Answer: keep-alives
A keep-alive is (effectively) a NOP packet whose sole purpose is to elicit a
response. They’re sent after a suitable period of silence—generally several
minutes to several hours
If the keep-alive packet does not receive an acknowledgment within the
proper interval, the connection can be declared dead and the state
discarded

TCP/IP Issues 28 / 42



UDP: The User Datagram Protocol

Some services, e.g., Voice over IP (VoIP) are better suited to a datagram
model
That is, they can tolerate occasional lost or damaged packets, but cannot
deal with delays for retransmissions
UDP provides the same datagram model as IP; the port numbers are used
for demultiplexing
The checksum is optional; if it’s received as zero, the validation is skipped
Note well: no kernel state is created by the receipt of a UDP packet; it’s
delivered to a listening application, if any, or discarded

TCP/IP Issues 29 / 42



UDP: The User Datagram Protocol

0 8 16 24 31

Source Port Destination Port

Length Checksum

User Data (if any). . .

TCP/IP Issues 30 / 42



The HTTPS Hourglass

For a number of reasons, especially firewalls and encryption, many new
protocols are layered on top of HTTPS
Example: Dropbox, Apple’s iMessage, and more
In other words, HTTPS is not just web servers

TCP/IP Issues 31 / 42



TCP in Linux

Client

struct sockaddr_in dest;

/* (Somehow) put the IP address
and port number of the server
into "dest"

*/
fd = socket(AF_INET, SOCK_STREAM, 0);
connect(fd, &dest, sizeof dest);

Server

struct sockaddr_in us, src;

/* (Somehow) put the service port
number into "us"; zero the rest
of it

*/
listenfd = socket(AF_INET, SOCK_STREAM, 0);
bind(listenfd, &us, sizeof us);
listen(listenfd, 5);
newfd = accept(listenfd, &src, sizeof src);
fork();

TCP/IP Issues 32 / 42



That’s a Lot of Information. . .

Yes, this is a rapid, deep dive into complex material
Unfortunately, most of the tutorials I’ve found online go into far more
depth on stuff I’ve skipped, e.g., the TCP state diagram
Most of the rest of the semester depends at least in part on this material

TCP/IP Issues 33 / 42



TCP State Transition Diagram

CLOSED

LISTEN

SYN
RCVD

SYN
SENT

ESTAB

FIN
WAIT-1

CLOSE
WAIT

FIN
WAIT-2

CLOSING
LAST
ACK

TIME
WAIT

CLOSED

passive OPEN (create TCB) CLOSE (delete TCB)

active OPEN (create TCB; send SYN)

CLOSE (delete TCB)

rcv SYN (send SYN, ACK) SEND (send SYN)

rcv SYN

(send ACK)

CLOSE (send FIN)

rcv ACK of FIN CLOSE (send FIN)

rcv ACK of FIN (delete TCB)rcv ACK of FINrcv FIN (send ACK)

2*MSL timeout

(delete TCB)

rcv FIN (send ACK)

CLOSE (send FIN) rcv FIN (send ACK)

rcv ACK of SYN rcv SYN, ACK (send ACK)



Basic Network Security

TCP/IP Issues 35 / 42



Network Security

The remaining lectures cover what is sometimes called “network security”
Most of the time, that’s wrong—there’s nothing wrong with the network
The network is the mechanism by which bad applications are attacked
(Highway robbery generally does not involve stealing a piece of the
road. . . )

TCP/IP Issues 36 / 42



Well, Sometimes it Does. . .

TCP/IP Issues 37 / 42



Claim: The Designers of the Internet Ignored Security

There are many claims about the Internet being designed without regard to
security. Most are incorrect.

Bad design False. Most of the problems are due to buggy applications, not
the design of the Internet

Authentication False. The Internet couldn’t mandate authentication, because
different operating systems do things different ways—and why
should you trust the sysadmin of a random remote site?

Encryption Partly true. It was assumed that encryption would be
provided outboard to the hosts—but that assumed that
link-layer and network-layer encryption was all that was
necessary. This is wrong

Ignorance Unknown. We don’t know what attacks were known or
thought of back then. Some were definitley known to the NSA;
others were known but (wrongly) considered infeasible.

TCP/IP Issues 38 / 42



Simple Attack: Eavesdropping

We’re worried about
eavesdroppers—let’s encrypt
the link from A to N2
What if the attacker targets a
different link, e.g., N2—N4?
Will traffic flow N10—N14—B or
N10—N13—B?
What if the operator of N2 is
corrupt or the node is hacked?
We need end-to-end
encryption, not link encryption
But link encryption is
sometimes useful anyway

�

��

��

�

���

���

���
��

��

��

��

���

���

��

���

��

���

TCP/IP Issues 39 / 42



Address Spoofing

Suppose that host D1
(somehow) steals D2’s IP
address
How will A1 know if it’s talking
to the real D2?
Or suppose that B4 answers an
ARP query intended for B1?
ARP isn’t authenticated
Remember when I talked about
the standard cryptographic
threat models. . . ?

A1

GW-A

A2

B1 GW-B B2 B3 B4

GW-DD1 D2

Internet F

TCP/IP Issues 40 / 42



State Consumption

Suppose that B4 is down and F
impersonates it, sending a SYN
packet to A2
The SYN+ACK—the second
message in the three-way
handshake—will go towards
host B4, but will be dropped
A2 has created state for the
half-open connection, but the
connection will never fully open
Eventually, it will time out, but
that will take a few minutes
Suppose that F does that
repeatedly. . .

Fake B4 A2

SYN
(seq=XX)

SYN, ACK
(seq=YY, ACK=XX+1)

SYN, ACK (resend)
(seq=YY, ACK=XX+1)

SYN, ACK (resend)
(seq=YY, ACK=XX+1)

. . .

TCP/IP Issues 41 / 42



Questions?

(Great horned owl, Central Park, November 17, 2019)


	A TCP/IP Tutorial
	Basic Network Security

