
Sandboxing 2

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Change Root: chroot()

Oldest Unix isolation mechanism
Make a process believe that some subtree is the entire file system
File outside of this subtree simply don’t exist
Sounds good, but. . .

Sandboxing 2 2 / 47

Chroot

Sandboxing 2 3 / 47

Limitations of Chroot

Only root can invoke it. (Why?)
Setting up minimum necessary environment can be painful
The program to execute generally needs to live within the subtree, where
it’s exposed
Still vulnerable to root compromise
Doesn’t protect network identity

Sandboxing 2 4 / 47

Root versus Chroot

Suppose an ordinary user could use chroot()

Create a link to the sudo command
Create /etc and /etc/passwd with a known root password
Create links to any files you want to read or write
Besides, root can escape from chroot()

Sandboxing 2 5 / 47

Escaping Chroot

What is the current directory? If it’s not under the chroot() tree, try
chdir("../../..")

Better escape: create device files
On Unix, all (non-network) devices have filenames
Even physical memory has a filename
Create a physical memory device, open it, and change the kernel data
structures to remove the restriction
Create a disk device, and mount a file system on it. Then chroot() to the
real root
(On Unix systems, disks other than the root file system are “mounted” as a
subtree somewhere)

Sandboxing 2 6 / 47

Trying Chroot

mkdir /usr/sandbox /usr/sandbox/bin
cp /bin/sh /usr/sandbox/bin/sh
chroot /usr/sandbox /bin/sh
chroot: /bin/sh: Exec format error
mkdir /usr/sandbox/libexec
cp /libexec/ld.elf_so /usr/sandbox/libexec
chroot /usr/sandbox /bin/sh
Shared object "libc.so.12" not found
mkdir /usr/sandbox/lib
cp /lib/libc.so.12 /usr/sandbox/lib
chroot /usr/sandbox /bin/sh
Shared object "libedit.so.2" not found

Sandboxing 2 7 / 47

Trying Chroot (Continued)

cp /lib/libedit.so.2 /usr/sandbox/lib
chroot /usr/sandbox /bin/sh
Shared object "libtermcap.so.0" not found
cp /lib/libtermcap.so.0 /usr/sandbox/lib
chroot /usr/sandbox /bin/sh
ls
ls: not found
echo sandbox >/Escape
^D
ls -l /usr/sandbox
total 4
drwxr-xr-x 2 root wheel 512 Nov 1 21:50 bin
-rw-r--r-- 1 root wheel 7 Nov 1 22:31 Escape
drwxr-xr-x 2 root wheel 512 Nov 1 22:31 lib
drwxr-xr-x 2 root wheel 512 Nov 1 22:30 libexec

Sandboxing 2 8 / 47

After Chroot

Sandboxing 2 9 / 47

Summary of Chroot

It’s a good, but imperfect means of restricting file access
It’s fairly useless against root
It doesn’t provide other sorts of isolation
Setting up a usable environment is more work than you might think

Sandboxing 2 10 / 47

FreeBSD “Jail”

Like chroot() on steroids
Assign a separate network identity to a jail partition
Restrict root’s abilities within a jail
Intended for nearly-complete system emulation
Network interactions with main system’s daemons
But we can do better. . .

Sandboxing 2 11 / 47

Sandboxes

Very restricted environment, especially for network daemons
Assume that the daemon will do anything
Example: Janus traps each system call and validates it against policy
Can limit I/O to certain paths

Sandboxing 2 12 / 47

The Java Virtual Machine

Java executables contain byte code, not machine language
Java interpreter can enforce certain restrictions
Java language prevents certain dangerous constructs and operations
(unlike, for example, C)
In theory, it’s safe enough that web browsers can download byte code
from arbitrary web sites
But that’s in theory. . .

Sandboxing 2 13 / 47

Is the JVM Secure?

Heavy dependency on the semantics of the Java language
The byte code verifier ensures that the code corresponds only to valid Java
The class loader ensures that arguments to methods match properly
Very complex process—not high assurance
Bugs have been found, but they’re fairly subtle
But—there have been buffer overflows in the C support library
The support library, in fact, is large, written in C, and quite buggy
Currently, the JVM is considered to be very insecure

Sandboxing 2 14 / 47

Using the JVM For Servers

The dangers come from untrusted executables
If you write your applications in Java, you don’t have to worry about that
RAndroid apps are all written in Java (Note that Android has other
security issues)
The strict type system, the array bounds-checking, and the (optional) file
access control all protect you from your own bugs
Java is a very secure language for applications (if, of course, you’re not too
fussy about performance, and even that’s gotten a lot better)

Sandboxing 2 15 / 47

Virtual Machines

Give the application an entire “machine”, down to the (virtual) bare silicon
Run an entire operating system on this
Run the untrusted application on that OS
It can be very safe—but not perfect

Sandboxing 2 16 / 47

How VMs Work

Recall the hardware access control mechanisms: privileged operations and
memory protection
Run the guest operating system unprivileged
Any time the guest OS issues a privileged operation, it traps to the
hypervisor
(On some hardware architectures, kernel mode is known as “supervisor
state”)
The hypervisor emulates the operation. For example, an attempt at disk
I/O is mapped to I/O to a real file that represents the virtual disk

Sandboxing 2 17 / 47

Virtual Devices

Virtual disks (or part or all of a real disk)
Virtual screens, keyboards, and mice
Virtual Ethernets
Other virtual devices as needed

Sandboxing 2 18 / 47

There Used to be Virtual Card Readers
and Virtual Card Punches

Sandboxing 2 19 / 47

Virtual Machine Security

Very strong isolation
Very high overhead. . .
Must set up and administer an entire OS

R Guest copies of Microsoft Windows or Linux require just as many patches
as do native copies
Performance can be bad, though modern hardware architectures have
special instructions to improve VM performance

Sandboxing 2 20 / 47

Using Virtual Machines

Great for testing OS changes
Great for student use
Internet hosting companies
Can use them for executing suspected viruses and worms—but some
viruses detect the presence of the hypervisor and hide

Sandboxing 2 21 / 47

Interacting with a Virtual Machine

Often don’t want perfect isolation.
Example: cut-and-paste between windows
Performance can be dramatically enhanced if the guest OS signals the
hypervisor
Example: add a virtual “graphics” driver that calls the hypervisor, via the
equivalent of a system call

Sandboxing 2 22 / 47

Calling the Hypervisor

Need an analog to a system call (sometimes known as a hypercall)
Use some instruction that will cause a trap—but not an instruction used by
a guest OS
Example: the first VM system (developed at IBM) relied on an instruction
used only to run hardware diagnostics; never used by a real OS
Can you run a virtual hypervisor? Sometimes. . .

Sandboxing 2 23 / 47

Limitations of Virtual Machines

They can be too real
Would you let your enemy put a machine inside your data center?
VMs can spread viruses, launch DoS attacks, etc.
VMs require just as much care, administration, and monitoring as do real
machines
In many situations, they represent an economic mechanism rather than a
security mechanism
(Save on power, cooling, etc.)
But—may be less painful when wiping the disk and starting over

Sandboxing 2 24 / 47

The MacOS App Sandbox

Requested permissions are specified at compile time
Permissions (and the program) are part of a digitally signed object; system
can verify the signature at execution time
Fairly simple set of permissions to allow access to certain files
App cannot request other files outside of its sandbox directory

R Programs sold via Apple’s App Store must use sandboxing

Sandboxing 2 25 / 47

App Permissions

There are other
permissions related to
Apple’s online services,
e.g., to permit in-app
purchases or to be part of
their “Game Center”.

Sandboxing 2 26 / 47

Note Carefully

These restrictions do not map cleanly to file permissions or to a
chroot-type environment
Contacts is a set of files
Location is a system service
USB is a broad set of devices
There are magic filenames: Downloads, Pictures, etc.
No other file accesses are permitted

Sandboxing 2 27 / 47

HTML5 Sandboxing

HTML5 allows IFRAMEs to be sandboxed:
Plugins, applets, etc., are disabled
Cookies aren’t shared with the sandbox
No pop-ups, new browser windows, etc.

Sandboxing 2 28 / 47

Windows Sandboxing

Windows has multiple sandboxes
Some apps (e.g., Internet Explorer, Adobe Acrobat Reader) are split into
trusted/untrusted halves; the untrusted half is sandboxed using
AppContainer
All Windows Store apps must be sandboxed
On some versions of Windows 10, users can create a lightweight virtual
machine to run applications

Sandboxing 2 29 / 47

Docker

Multiplatform application “containers”
Runs on top of the kernel; contains an application and the libraries it needs
Does not require a full new OS, hence is lighter-weight
Uses Linux cgroups and namespaces to protect the host

Sandboxing 2 30 / 47

Cgroups

High-level mechanism for resource control and accounting
Can limit memory use, disk bandwidth, CPU consumption, etc.
Applies to groups of processes
Also measures resource consumption; usable for billing

Sandboxing 2 31 / 47

Namespaces

Programs normally refer to things by name: file names, process IDs, etc.
Linux namespaces let a process refer to things by different names, or use
an old name for a different resource
Example: /etc/passwd normally refers to a particular system file—but
with namespaces, a program opening /etc/passwd could actually get a
different file—and it couldn’t tell that that was what was happening
Other namespaces: process ID, network addresses, usernames, and more

Sandboxing 2 32 / 47

Docker

Uses namespaces to remap files and other resources
Uses cgroups to limit resource usage
Virtualizes userspace, not the kernel—much higher performance
But wait—there’s more!

Sandboxing 2 33 / 47

More About Docker

Because Docker virtualizes the file system namespace, it’s possible to
have different versions of the same files in different containers
A Docker application’s container can contain the specific versions of the
libraries and packages it relies on
A different Docker application on the same machine can use different
versions of these libraries, with no conflict
Eliminates issues of host system dependency
An application and its dependencies are combined into a Docker image
Docker images can be shipped around!

Sandboxing 2 34 / 47

Docker

Docker is more for containerization than virtualization
Security is a useful aspect, but probably not the main motivation
It does not always simplify system administration—you may have to patch
containers
Example: suppose there’s a bug in, say, the JPG rendering library—you
have to patch all of your VMs and all Docker images that use it
And remember that one reason for containers is so that different images
can run different library versions—including buggy, insecure versions. . .

Sandboxing 2 35 / 47

Which is More Secure, Docker or a VM?

VMs provide stronger isolation
Docker per se is a framework; a lot depends on how the individual images
are configured
Images that use common libraries are easier to update than on VMs:
update one place and all instances benefit
However: it might be harder to update libraries that are specific to certain
Docker images

Sandboxing 2 36 / 47

Which is More Secure, Docker or a VM?

VMs provide stronger isolation
Docker per se is a framework; a lot depends on how the individual images
are configured

Images that use common libraries are easier to update than on VMs:
update one place and all instances benefit
However: it might be harder to update libraries that are specific to certain
Docker images

Sandboxing 2 36 / 47

Which is More Secure, Docker or a VM?

VMs provide stronger isolation
Docker per se is a framework; a lot depends on how the individual images
are configured
Images that use common libraries are easier to update than on VMs:
update one place and all instances benefit
However: it might be harder to update libraries that are specific to certain
Docker images

Sandboxing 2 36 / 47

The Limits of Isolation

All of the mechanisms we’ve described are complex (but canned scripts
can help)
Older ones typically require root privileges to set up and often to invoke
As a consequence, they’re useful for complex system designs, but not for
general application isolation
Newer ones are better, but still very complex
And you can’t hide everything

Sandboxing 2 37 / 47

Password-Checking and Sandboxes

An old operating system (Tenex, for the PDP-10) checked (unhashed)
passwords one byte at a time.
It returned a failure indication as soon as a byte didn’t match
Locate the password overlapping the end of virtual memory; ask the OS to
check it
If the first byte was wrong, it would return “fail”.
If the byte was right, it would try to fetch the next byte, but take a
segmentation fault because it was past the edge
Repeat as needed

Sandboxing 2 38 / 47

Falling Off the Edge of the Earth

e

s e c

s e c

r

r e

s 3 c r

t

e

s 3 c r

Sandboxing 2 39 / 47

Walls and Doors

Fundamentally, our security mechanisms are walls
Separate applications from the kernel and from each other
But applications need to talk to users, to the kernel, and to other
applications—and that requires “doors”
Our walls are pretty strong (though not perfect)—but doors are hard

Sandboxing 2 40 / 47

Sandboxing a Browser

Page-rendering is hard (and therefore error-prone): isolate it
Protect browser tabs from each other, to prevent, e.g., cookie-stealing
bugs—put each tab in a separate sandbox
User interface—keyboard, mouse, display—is safe; doesn’t need to be
sandboxed

But—how do the different parts talk?
That’s why we need doors. . .

Sandboxing 2 41 / 47

Sandboxing a Browser

Page-rendering is hard (and therefore error-prone): isolate it
Protect browser tabs from each other, to prevent, e.g., cookie-stealing
bugs—put each tab in a separate sandbox
User interface—keyboard, mouse, display—is safe; doesn’t need to be
sandboxed
But—how do the different parts talk?

That’s why we need doors. . .

Sandboxing 2 41 / 47

Sandboxing a Browser

Page-rendering is hard (and therefore error-prone): isolate it
Protect browser tabs from each other, to prevent, e.g., cookie-stealing
bugs—put each tab in a separate sandbox
User interface—keyboard, mouse, display—is safe; doesn’t need to be
sandboxed
But—how do the different parts talk?
That’s why we need doors. . .

Sandboxing 2 41 / 47

Doors

The different pieces of the browser have communication channels to each
other
Fundamentally, this is message-passing
How do we get the policy right?
How do we get the implementation right?

Sandboxing 2 42 / 47

Example: A Sandboxed Mailer and Browser

Break up the mailer in similar fashion
(Exercise: what should the pieces be?)
Someone sends you an email containing a URL
You click on it—so the mailer has to talk to the browser
Or: there’s a mailto: URL in a web page, so the browser needs to talk to
the mailer
There needs to be a door between the mailer and the browser

Sandboxing 2 43 / 47

Is There a Door?

Perhaps that communication takes place in the unprotected parts of these
applications
You can type URLs and compose email messages manually
Is this channel safe?

No—URL-parsing is hard

Sandboxing 2 44 / 47

Is There a Door?

Perhaps that communication takes place in the unprotected parts of these
applications
You can type URLs and compose email messages manually
Is this channel safe?
No—URL-parsing is hard

Sandboxing 2 44 / 47

More Limits to Isolation

We cannot isolate things completely—we need to talk to applications
But any communications path is a potential source of attack
We have to understand what is risky and what isn’t
We have to design our channels carefully—and implement them correctly

Sandboxing 2 45 / 47

Should We Sandbox?

Yes—our applications are not secure enough
It’s not a panacea, but it helps
Note well: the original security model assumed that if the kernel was
secure, we didn’t have to worry about applications
We now know that that isn’t enough, which is why we uses sandboxes on
top of our (nominally) secure kernels

Sandboxing 2 46 / 47

Questions?

(Black-throated blue warbler, Central Park, October 27, 2019)

