Sandboxing 2

@O0

BY NC

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Change Root: chroot()

@ Oldest Unix isolation mechanism

@ Make a process believe that some subtree is the entire file system
@ File outside of this subtree simply don’t exist

@ Sounds good, but. ..

2/47

localtime

passwd

sh

Limitations of Chroot

@ Only root can invoke it. (Why?)

@ Setting up minimum necessary environment can be painful

@ The program to execute generally needs to live within the subtree, where
it's exposed

@ Still vulnerable to root compromise

@ Doesn’t protect network identity

4/47

Root versus Chroot

@ Suppose an ordinary user could use chroot()

@ Create a link to the sudo command

@ Create /etc and /etc/passwd with a known root password
@ Create links to any files you want to read or write

@ Besides, root can escape from chroot()

Escaping Chroot

@ What is the current directory? If it's not under the chroot () tree, try
chdir("../../7..")

Better escape: create device files

On Unix, all (non-network) devices have filenames

Even physical memory has a filename

Create a physical memory device, open it, and change the kernel data

structures to remove the restriction

@ Create a disk device, and mount a file system on it. Then chroot() to the
real root

@ (On Unix systems, disks other than the root file system are “mounted” as a

subtree somewhere)

Trying Chroot

mkdir /usr/sandbox /usr/sandbox/bin
cp /bin/sh /usr/sandbox/bin/sh

chroot /usr/sandbox /bin/sh

chroot: /bin/sh: Exec format error

mkdir /usr/sandbox/libexec

cp /libexec/ld.elf_so /usr/sandbox/libexec
chroot /usr/sandbox /bin/sh

Shared object "libc.so0.12" not found
mkdir /usr/sandbox/lib

cp /lib/libc.s0.12 /usr/sandbox/lib
chroot /usr/sandbox /bin/sh

Shared object "libedit.so.2" not found

7/47

Trying Chroot (Continued)

cp /lib/libedit.so0.2 /usr/sandbox/lib

chroot /usr/sandbox /bin/sh

Shared object "libtermcap.so0.0" not found
cp /lib/libtermcap.s0.0 /usr/sandbox/1lib
chroot /usr/sandbox /bin/sh

1s

ls: not found

echo sandbox >/Escape

"D

1s -1 /usr/sandbox

total 4

drwxr-xr-x 2 root wheel 512 Nov 1 21:50 bin
-rw-r--r-- 1 root wheel 7 Nov 1 22:31 Escape
drwxr-xr-x 2 root wheel 512 Nov 1 22:31 lib
drwxr-xr-x 2 root wheel 512 Nov 1 22:30 libexec

After Chroot

localtime sandbox

Summary of Chroot

@ It's a good, but imperfect means of restricting file access

@ It's fairly useless against root

@ It doesn’t provide other sorts of isolation

@ Setting up a usable environment is more work than you might think

FreeBSD “Jail”

Like chroot () on steroids

Assign a separate network identity to a jail partition
Restrict root’s abilities within a jail

Intended for nearly-complete system emulation
Network interactions with main system’s daemons
But we can do better...

11/47

@ Very restricted environment, especially for network daemons

@ Assume that the daemon will do anything

@ Example: Janus traps each system call and validates it against policy
@ Can limit I/O to certain paths

12/47

The Java Virtual Machine

@ Java executables contain byte code, not machine language
@ Java interpreter can enforce certain restrictions

@ Java language prevents certain dangerous constructs and operations
(unlike, for example, C)

@ In theory, it's safe enough that web browsers can download byte code
from arbitrary web sites

@ But that’s in theory...

Is the JVM Secure?

@ Heavy dependency on the semantics of the Java language

@ The byte code verifier ensures that the code corresponds only to valid Java
@ The class loader ensures that arguments to methods match properly

@ Very complex process—not high assurance

@ Bugs have been found, but they’re fairly subtle

@ But—there have been buffer overflows in the C support library

@ The support library, in fact, is large, written in C, and quite buggy

@ Currently, the JVM is considered to be very insecure

14/47

Using the JVM For Servers

@ The dangers come from untrusted executables

@ If you write your applications in Java, you don’t have to worry about that
=Android apps are all written in Java (Note that Android has other
security issues)

@ The strict type system, the array bounds-checking, and the (optional) file
access control all protect you from your own bugs

@ Java is a very secure language for applications (if, of course, you're not too
fussy about performance, and even that’'s gotten a lot better)

Virtual Machines

@ Give the application an entire “machine”, down to the (virtual) bare silicon
@ Run an entire operating system on this

@ Run the untrusted application on that OS

@ It can be very safe—but not perfect

How VMs Work

@ Recall the hardware access control mechanisms: privileged operations and
memory protection

@ Run the guest operating system unprivileged

@ Any time the guest OS issues a privileged operation, it traps to the
hypervisor

@ (On some hardware architectures, kernel mode is known as “supervisor
state”)

@ The hypervisor emulates the operation. For example, an attempt at disk
I/0 is mapped to I/O to a real file that represents the virtual disk

17/47

Virtual Devices

@ Virtual disks (or part or all of a real disk)
@ Virtual screens, keyboards, and mice

@ Virtual Ethernets

@ Other virtual devices as needed

There Used to be Virtual Card Readers

and Virtual Card Punches

[T 73 4]5 7 88 1 1 1273 1a 1 16[17 18 15 2420 21 28 24[2% 2 20]38 3 31 34133 34 36 3537 36 38 Au[er 2 &3 W]85 46 &7 aaes 0 Sv Sa[53 55 sy 58 @ @i @ 3 64[i5 56 61 6858 70 71 12]13 14 15 16]11 18 18 06

000000COO0000000000D0D0O0CO00000C000000000000300000000D000000G000000000000000

WU RNUBEET NN N AUGEINRU N NN BB RN QAN EGEETBOAN NIHBATAININ IS EITRINI RN NBET NN

9
IR AR R R R R R R R R R R R R R R R R R AR R R R R R R R R R RN R R RR R
297222122122

$33233 333333333331331333

G444 4444044444448 4844444044448004884040400484044

COMPUTATION CENTER

555555555555555555555555 THE UNIVERSITY OF NORTH CAROLINA §55555 35
CHAPEL HILL

666666666 66666666666660666G66666666666666G666666666

LA4444484484440848
5555565555558535355
6CCEE66666666666

| o e B O T B R SR R 8 R e B EEECRRA GRS s I

I 8080B0BOBOBBOROGGBOB0B0000608006068080680886283886880888 gespBeeBo2CEBB888

99999999999999999995999999999999099993999909999999999292999080990990809989959999999%9
11 450 L8,]
N

WURBUB BTN R BABBI BRI NN UB RV BRENQAGEETRED DA HIRINIOONBEO WO BN 2N MBI

1 1
ECC/HP 19922

Virtual Machine Security

@ Very strong isolation
@ Very high overhead. ..
@ Must set up and administer an entire OS

1= Guest copies of Microsoft Windows or Linux require just as many patches
as do native copies

@ Performance can be bad, though modern hardware architectures have
special instructions to improve VM performance

Using Virtual Machines

@ Great for testing OS changes
@ Great for student use
@ Internet hosting companies

@ Can use them for executing suspected viruses and worms—but some
viruses detect the presence of the hypervisor and hide

PAVE Y,

Interacting with a Virtual Machine

@ Often don’t want perfect isolation.
@ Example: cut-and-paste between windows

@ Performance can be dramatically enhanced if the guest OS signals the
hypervisor

@ Example: add a virtual “graphics” driver that calls the hypervisor, via the
equivalent of a system call

22/47

Calling the Hypervisor

@ Need an analog to a system call (sometimes known as a hypercall)

@ Use some instruction that will cause a trap—but not an instruction used by
a guest OS

@ Example: the first VM system (developed at IBM) relied on an instruction
used only to run hardware diagnostics; never used by a real OS

@ Can you run a virtual hypervisor? Sometimes. ..

Limitations of Virtual Machines

@ They can be too real
@ Would you let your enemy put a machine inside your data center?
@ VMs can spread viruses, launch DoS attacks, etc.

@ VMs require just as much care, administration, and monitoring as do real
machines

@ In many situations, they represent an economic mechanism rather than a
security mechanism

@ (Save on power, cooling, etc.)
@ But—may be less painful when wiping the disk and starting over

24/47

The MacOS App Sandbox

@ Requested permissions are specified at compile time

@ Permissions (and the program) are part of a digitally signed object; system
can verify the signature at execution time

@ Fairly simple set of permissions to allow access to certain files
@ App cannot request other files outside of its sandbox directory
= Programs sold via Apple’s App Store must use sandboxing

App Permissions

v m App Sandbox

Network

Hardware

App Data

File Access

Steps

|_| Incoming Cennections (Server)

|_| Outgoing Connections (Client)

|_| Camera

|_| Microphone

|| UsB

|_| Printing

|_| Contacts

|_| Location

|_| Calendar

Type Permission & Access
User Selected File None :
Downloads Folder Nane 5
Pictures Folder None :
Music Folder Naone b
Movies Folder None s
+ Add the "App Sandbox" entitlement to your entitlements fi

There are other
permissions related to
Apple’s online services,
e.g., to permit in-app
purchases or to be part of
their “Game Center”.

Note Carefully

@ These restrictions do not map cleanly to file permissions or to a
chroot-type environment

@ Contacts is a set of files

@ Location is a system service

@ USB is a broad set of devices

@ There are magic filenames: Downloads, Pictures, etc.
@ No other file accesses are permitted

27/47

HTML5 Sandboxing

@ HTML5 allows IFRAMEs to be sandboxed:
@ Plugins, applets, etc., are disabled

@ Cookies aren’t shared with the sandbox

@ No pop-ups, new browser windows, etc.

Windows Sandboxing

@ Windows has multiple sandboxes

@ Some apps (e.qg., Internet Explorer, Adobe Acrobat Reader) are split into
trusted/untrusted halves; the untrusted half is sandboxed using
AppContainer

@ All Windows Store apps must be sandboxed

@ On some versions of Windows 10, users can create a lightweight virtual
machine to run applications

@ Multiplatform application “containers”

@ Runs on top of the kernel; contains an application and the libraries it needs
@ Does not require a full new OS, hence is lighter-weight

@ Uses Linux cgroups and namespaces to protect the host

@ High-level mechanism for resource control and accounting

@ Can limit memory use, disk bandwidth, CPU consumption, etc.
@ Applies to groups of processes

@ Also measures resource consumption; usable for billing

Namespaces

@ Programs normally refer to things by name: file names, process IDs, etc.

@ Linux namespaces let a process refer to things by different names, or use
an old name for a different resource

@ Example: /etc/passwd normally refers to a particular system file—but
with namespaces, a program opening /etc/passwd could actually get a
different file—and it couldn’t tell that that was what was happening

@ Other namespaces: process ID, network addresses, usernames, and more

@ Uses namespaces to remap files and other resources

@ Uses cgroups to limit resource usage

@ Virtualizes userspace, not the kernel—much higher performance
@ But wait—there’s more!

More About Docker

@ Because Docker virtualizes the file system namespace, it's possible to
have different versions of the same files in different containers

@ A Docker application’s container can contain the specific versions of the
libraries and packages it relies on

@ A different Docker application on the same machine can use different
versions of these libraries, with no conflict

@ Eliminates issues of host system dependency
@ An application and its dependencies are combined into a Docker image
@ Docker images can be shipped around!

@ Docker is more for containerization than virtualization
@ Security is a useful aspect, but probably not the main motivation

@ It does not always simplify system administration—you may have to patch
containers

@ Example: suppose there’s a bug in, say, the JPG rendering library—you
have to patch all of your VMs and all Docker images that use it

@ And remember that one reason for containers is so that different images
can run different library versions—including buggy, insecure versions. ..

Which is More Secure, Docker or a VM?

Which is More Secure, Docker or a VM?

@ VMs provide stronger isolation

@ Docker per se is a framework; a lot depends on how the individual images
are configured

Which is More Secure, Docker or a VM?

@ VMs provide stronger isolation

@ Docker per se is a framework; a lot depends on how the individual images
are configured

@ Images that use common libraries are easier to update than on VMs:
update one place and all instances benefit

@ However: it might be harder to update libraries that are specific to certain
Docker images

The Limits of Isolation

@ All of the mechanisms we’ve described are complex (but canned scripts
can help)

@ Older ones typically require root privileges to set up and often to invoke

@ As a consequence, they’re useful for complex system designs, but not for
general application isolation

@ Newer ones are better, but still very complex
@ And you can’t hide everything

Password-Checking and Sandboxes

An old operating system (Tenex, for the PDP-10) checked (unhashed)
passwords one byte at a time.

@ It returned a failure indication as soon as a byte didn’t match

@ Locate the password overlapping the end of virtual memory; ask the OS to
check it

@ If the first byte was wrong, it would return “fail”.

o If the byte was right, it would try to fetch the next byte, but take a
segmentation fault because it was past the edge

@ Repeat as needed

Falling Off the Edge of the Earth

Walls and Doors

@ Fundamentally, our security mechanisms are walls
@ Separate applications from the kernel and from each other

@ But applications need to talk to users, to the kernel, and to other
applications—and that requires “doors”

@ Our walls are pretty strong (though not perfect)—but doors are hard

Sandboxing a Browser

@ Page-rendering is hard (and therefore error-prone): isolate it

@ Protect browser tabs from each other, to prevent, e.g., cookie-stealing
bugs—put each tab in a separate sandbox

@ User interface—keyboard, mouse, display—is safe; doesn’t need to be
sandboxed

41/47

Sandboxing a Browser

@ Page-rendering is hard (and therefore error-prone): isolate it

@ Protect browser tabs from each other, to prevent, e.g., cookie-stealing
bugs—put each tab in a separate sandbox

@ User interface—keyboard, mouse, display—is safe; doesn’t need to be
sandboxed

@ But—how do the different parts talk?

41/47

Sandboxing a Browser

@ Page-rendering is hard (and therefore error-prone): isolate it

@ Protect browser tabs from each other, to prevent, e.g., cookie-stealing
bugs—put each tab in a separate sandbox

@ User interface—keyboard, mouse, display—is safe; doesn’t need to be
sandboxed

@ But—how do the different parts talk?
@ That's why we need doors. ..

41/47

Doors

@ The different pieces of the browser have communication channels to each
other

@ Fundamentally, this is message-passing
@ How do we get the policy right?
@ How do we get the implementation right?

42/47

Example: A Sandboxed Mailer and Browser

@ Break up the mailer in similar fashion

@ (Exercise: what should the pieces be?)

@ Someone sends you an email containing a URL

@ You click on it—so the mailer has to talk to the browser

@ Or: there’samailto: URL in a web page, so the browser needs to talk to
the mailer

@ There needs to be a door between the mailer and the browser

Is There a Door?

@ Perhaps that communication takes place in the unprotected parts of these
applications

@ You can type URLs and compose email messages manually
@ [s this channel safe?

44747

Is There a Door?

@ Perhaps that communication takes place in the unprotected parts of these
applications

@ You can type URLs and compose email messages manually
@ [s this channel safe?
@ No—URL-parsing is hard

44747

More Limits to Isolation

@ We cannot isolate things completely—we need to talk to applications

@ But any communications path is a potential source of attack

@ We have to understand what is risky and what isn’t

@ We have to design our channels carefully—and implement them correctly

Should We Sandbox?

@ Yes—our applications are not secure enough
@ It's not a panacea, but it helps

@ Note well: the original security model assumed that if the kernel was
secure, we didn’t have to worry about applications

@ We now know that that isn’t enough, which is why we uses sandboxes on
top of our (nominally) secure kernels

Questions?

(Black-throated blue warbler, Central Park, October 27, 2019)

