
Secure Programming; Sandboxing

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


Becoming Root

Sometimes, we need root privileges to do things
However, doing things as root is potentially dangerous
Our goal: being root safely, while still getting things done
Scenarios: shell access for the administrator; setuid programs

Secure Programming; Sandboxing 2 / 32



Running Commands as Root

Secure Programming; Sandboxing 3 / 32



Shell Access as Root

Three possible approaches:
Traditional: log in directly as root

Traditional temporary access: the su (superuser) command
More modern: sudo or sudo -i

The difference: accountability

Secure Programming; Sandboxing 4 / 32



Logging in as Root

Traditional answer: it’s a bad idea, because all sysadmins have to share
the root password—who is using it?
Also traditional: users are dialing in via phone lines (or equivalent)—not
readily traceable
Dial-up? What’s that?
Today, we connect over the network—are the risks the same?
Not quite. . .

Secure Programming; Sandboxing 5 / 32



Login via ssh

On the sysadmin’s computer:

ssh root@w4181.cs.columbia.edu

On the server:

# tail /var/log/auth.log
Nov 4 21:18:58 w4181 sshd[212391]: Accepted publickey for root

from 128.59.13.23 port 35316 ssh2: ED25519 SHA256:09UamV21PlHO18xa4ab5Rx+gd2t8RxwXyBJza+5Yc+g
Nov 4 21:18:58 w4181 sshd[212391]: pam_unix(sshd:session): session opened

for user root by (uid=0)
Nov 4 21:18:58 w4181 systemd-logind[790]: New session 279 of user root.

We see the client’s IP address (128.59.13.23) and which SSH key was used for
authentication. Problem solved?

Not quite. . .

Secure Programming; Sandboxing 6 / 32



Login via ssh

On the sysadmin’s computer:

ssh root@w4181.cs.columbia.edu

On the server:

# tail /var/log/auth.log
Nov 4 21:18:58 w4181 sshd[212391]: Accepted publickey for root

from 128.59.13.23 port 35316 ssh2: ED25519 SHA256:09UamV21PlHO18xa4ab5Rx+gd2t8RxwXyBJza+5Yc+g
Nov 4 21:18:58 w4181 sshd[212391]: pam_unix(sshd:session): session opened

for user root by (uid=0)
Nov 4 21:18:58 w4181 systemd-logind[790]: New session 279 of user root.

We see the client’s IP address (128.59.13.23) and which SSH key was used for
authentication. Problem solved? Not quite. . .

Secure Programming; Sandboxing 6 / 32



Issues

What if a non-attributable IP address is used? 128.59.13.23 is in fact a VPN
exit address
What if passwords are still accepted? That rules out the other form of
authentication
And there are often still console logins via the virtual machine
hypervisor—does it keep good logs?
But we often need the ability:

$ ssh root@w4181.cs.columbia.edu apt update

Best solution: allow ssh as root, but restrict it (stay tuned)

Secure Programming; Sandboxing 7 / 32



Using su

Login as yourself and then use su

More accountable: login records show who was logged in to the session
and then executed su

You can use su to issue a single command, but it’s more geared towards
interactive shells
But: there’s still a shared root password, though you generally need extra
authorization to be able to use su

And there’s no way to restrict what this user can do as root

In other words: a decent solution but not a perfect one

Secure Programming; Sandboxing 8 / 32



Root via sudo

A command to grant temporary
privileged status to specific users,
after they authenticate
Easily usable for single commands
(“sudo cmd”) or for interactive
sessions (“sudo -i”)
Can be restricted to specific users,
specific commands, etc.
Password authentication lasts for
several minutes, for multiple
invocations
More accountability, more
usability, and more authorization
The normal approach on Linux

https://xkcd.com/149/

Secure Programming; Sandboxing 9 / 32

https://xkcd.com/149/


Programming with setuid

Secure Programming; Sandboxing 10 / 32



Programming with setuid

We’ve spent a lot of time talking about writing secure code
The same, of course, applies to setuid code
But there are special techniques that are of particular use here
Two primary goals:

Don’t make mistakes peculiar to setuid code
Use the principle of least privilege to limit or eliminate the damage

Important definitions:
Real UID The UID of the process that invoked the setuid program

Effective UID The UID that the program is setuid to, i.e., the
privileged UID

Note: Most of what I’ll say is true of setgid programs as well; in the
interests of brevity, I won’t mention that again

Secure Programming; Sandboxing 11 / 32



Opening Files

Many privileged programs will open user-specified files
Should the files be opened?
Example: to print a file, it’s handed to the print spooler—but that’s usually
setuid to user lp or some such
How should such files be opened?

Just open them
Use the access() system call
Shed privilege

Secure Programming; Sandboxing 12 / 32



Just Open Them

Nope!

lp may not be able to open user files if they’re read-protected
The user may try to print files that are read-protected by lp

Secure Programming; Sandboxing 13 / 32



Just Open Them

Nope!
lp may not be able to open user files if they’re read-protected
The user may try to print files that are read-protected by lp

Secure Programming; Sandboxing 13 / 32



The access() System Call

From the man page: access() checks whether the calling process
can access the file pathname...
The check is done using the calling process’s real UID and
GID.

It seems to do what we want. . .

This is a classic situation for a race condition attack. From the Linux man
page:

Warning: Using these calls ...creates a security
hole...For this reason, the use of this system call should
be avoided.

Secure Programming; Sandboxing 14 / 32



The access() System Call

From the man page: access() checks whether the calling process
can access the file pathname...
The check is done using the calling process’s real UID and
GID.

It seems to do what we want. . .
This is a classic situation for a race condition attack. From the Linux man
page:

Warning: Using these calls ...creates a security
hole...For this reason, the use of this system call should
be avoided.

Secure Programming; Sandboxing 14 / 32



Shedding Privilege

The only safe way to open a user-specified file is to do it as that user
Temporarily shed privilege:

saveuid = geteuid();

seteuid(getuid());
fd = open(filename, O_RDONLY);

seteuid(saveuid);

Set the effective UID to the real UID, i.e., the UID of the invoking user
When the file is open, resume privileges using the saved UID
The saved UID is what the program was originally setuid() to—non-root
programs can only setuid() to the real UID or the saved UID
Note: permissions are checked at open() time, not at read() or write()
time

Secure Programming; Sandboxing 15 / 32



Shedding Privilege

The only safe way to open a user-specified file is to do it as that user
Temporarily shed privilege:

saveuid = geteuid();

seteuid(getuid());
fd = open(filename, O_RDONLY);

seteuid(saveuid);

Set the effective UID to the real UID, i.e., the UID of the invoking user

When the file is open, resume privileges using the saved UID
The saved UID is what the program was originally setuid() to—non-root
programs can only setuid() to the real UID or the saved UID
Note: permissions are checked at open() time, not at read() or write()
time

Secure Programming; Sandboxing 15 / 32



Shedding Privilege

The only safe way to open a user-specified file is to do it as that user
Temporarily shed privilege:

saveuid = geteuid();

seteuid(getuid());
fd = open(filename, O_RDONLY);

seteuid(saveuid);

Set the effective UID to the real UID, i.e., the UID of the invoking user
When the file is open, resume privileges using the saved UID

The saved UID is what the program was originally setuid() to—non-root
programs can only setuid() to the real UID or the saved UID
Note: permissions are checked at open() time, not at read() or write()
time

Secure Programming; Sandboxing 15 / 32



Shedding Privilege

The only safe way to open a user-specified file is to do it as that user
Temporarily shed privilege:

saveuid = geteuid();
seteuid(getuid());
fd = open(filename, O_RDONLY);
seteuid(saveuid);

Set the effective UID to the real UID, i.e., the UID of the invoking user
When the file is open, resume privileges using the saved UID
The saved UID is what the program was originally setuid() to—non-root
programs can only setuid() to the real UID or the saved UID

Note: permissions are checked at open() time, not at read() or write()
time

Secure Programming; Sandboxing 15 / 32



Shedding Privilege

The only safe way to open a user-specified file is to do it as that user
Temporarily shed privilege:

saveuid = geteuid();
seteuid(getuid());
fd = open(filename, O_RDONLY);
seteuid(saveuid);

Set the effective UID to the real UID, i.e., the UID of the invoking user
When the file is open, resume privileges using the saved UID
The saved UID is what the program was originally setuid() to—non-root
programs can only setuid() to the real UID or the saved UID
Note: permissions are checked at open() time, not at read() or write()
time

Secure Programming; Sandboxing 15 / 32



Opening Files with Message-Passing

In message-passing systems, the privileged program can’t temporarily
shed and then regain privileges—it always has them
Instead, an unprivileged program has to open the file and pass the file
descriptor to the privileged program
Linux can do that with Unix-domain sockets, using sendmsg()/recvmsg()
and SCM_RIGHTS

Secure Programming; Sandboxing 16 / 32



Using ACLs

Assert that all printable files must be readable by, e.g., group SysDaemon

Use initial ACLs to make that the default for files
The print daemon is then setgid() to group SysDaemon and hence can
open such files
Its own files would need to be readable/writeable only by SysDaemon

Secure Programming; Sandboxing 17 / 32



Least Privilege

Secure Programming; Sandboxing 18 / 32



Least Privilege

Much of the time, even privileged programs are doing unprivileged things
Why do them with privilege?
Policy: shed privileges at the beginning; resume them temporarily only
when needed
saveuid = geteuid();
seteuid(getuid());
...
seteuid(saveuid);
<do privileged stuff>
seteuid(getuid());

Are we safe?

Well, safer. . .

Secure Programming; Sandboxing 19 / 32



Least Privilege

Much of the time, even privileged programs are doing unprivileged things
Why do them with privilege?
Policy: shed privileges at the beginning; resume them temporarily only
when needed
saveuid = geteuid();
seteuid(getuid());
...
seteuid(saveuid);
<do privileged stuff>
seteuid(getuid());

Are we safe?
Well, safer. . .

Secure Programming; Sandboxing 19 / 32



Residual Risk

One of the big risks for privileged programs is attackers running code:
code injection attacks or ROP
If legitimate code can regain privilege via seteuid(saveuid), so can
attacker code
There are other risks in asynchronous situations, e.g., catching signals
(Threads have complex interactions with setuid(); I’m not even going to
try to cover that here. . . )
Shedding privilege permanently is safer

Secure Programming; Sandboxing 20 / 32



The Apache Web Server Redux

It must protect its private key
It must write to log files, but no one else should be able to overwrite them
It’s very exposed to attack

Secure Programming; Sandboxing 21 / 32



Shedding Privileges

Apache starts as root

Note: it must be invoked by root; it is not setuid()
It opens its private key file
It opens the socket and some log files, then forks and sheds privileges: it
sets its real and effective UIDs to www

When serving web pages, it runs as that non-privileged user
(Why isn’t it setuid()?)

Prevent local machine attacks—it has no privileges if invoked by some
other user

Secure Programming; Sandboxing 22 / 32



Shedding Privileges

Apache starts as root

Note: it must be invoked by root; it is not setuid()
It opens its private key file
It opens the socket and some log files, then forks and sheds privileges: it
sets its real and effective UIDs to www

When serving web pages, it runs as that non-privileged user
(Why isn’t it setuid()?)
Prevent local machine attacks—it has no privileges if invoked by some
other user

Secure Programming; Sandboxing 22 / 32



Some Other Useful Routines

getpwduid() Map a numeric UID to a username
getpwdnam() Map a username to a numeric UID

mlock() Lock some memory into RAM; keep sensitive data from being
written to the page file

FD_CLOEXEC Use with fcntl() to force certain file descriptors to be closed on
exec() of another program

*at() Linux has system calls, e.g., openat(), that operate relative to
an open file descriptor rather than the current directory; this
helps avoid race conditions

Secure Programming; Sandboxing 23 / 32



Sandboxing

Secure Programming; Sandboxing 24 / 32



Sandboxing

We want to really strip some applications of privileges
More precisely, we don’t want them to have even ordinary privileges
Limit files, network access, and more
Why? They’re high-risk—we don’t think they can be made adequately
secure
We want to protect almost all of the system from them
These are called sandboxes—in one sense, an area where an application
can make a mess without it mattering, but some make analogies to a cat’s
sandbox. . .

Secure Programming; Sandboxing 25 / 32



Couldn’t We Use ACLs?

ACL usually do not have permissions that say “don’t allow access to
anything else”
We’d have to find and change the protections of every file on the system
that was writable/readable/searchable by other

We’d have to ensure that no other such files were created
This is all possible but difficult
More seriously, it is not high assurance

Secure Programming; Sandboxing 26 / 32



Other Resources

What other resources need to be protected?
CPU time
Memory, real and virtual
Disk space
Network identity
Network access rights
More. . .

Secure Programming; Sandboxing 27 / 32



Some Are Easy

Operating systems already regulate access to some resources
Unix examples: setrlimit(), file system quotas

Secure Programming; Sandboxing 28 / 32



Network Identity and Access Rights

A machine has an IP address
A compromised application can use this address to exploit address-based
access control
If nothing else, it can confuse intrusion detection systems

Secure Programming; Sandboxing 29 / 32



Bypassing File Permissions

Suppose the attacker gains root privileges
This permits overriding file permissions
Also allows evasion of other resource limits, plus changes to network
identity

R Change the IP address and hide from the system administrator!

Secure Programming; Sandboxing 30 / 32



Goals

Security
High assurance
Simple setup
General-purpose mechanism
Available to all applications
We can’t get them all. . .

Secure Programming; Sandboxing 31 / 32



Questions?

(Black-and-white warbler, Central Park, October 19, 2019)


	Running Commands as Root
	Programming with setuid
	Least Privilege
	Sandboxing

