
Introduction to Cryptography
Public Key Infrastructure

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


Authentication

An important point from the Needham-Schroeder protocol and the attacks
on it: authentication—knowing to whom you’re actually talking—can be as
important as confidentiality
Cryptography has to provide both
Sometimes, authentication has to be bidirectional

Introduction to Cryptography 2 / 47



Bidirectional Authentication

Recent phone experience: “Hi, I’m from your doctor’s office; could you
give me your date of birth and social security number so I know I’m talking
to Steve Bellovin?”
Me: “No, you tell me; how do I know who you are?”
Them: “I just told you!”
Me: “And why should I believe you?”
Them:
Me:

Introduction to Cryptography 3 / 47



Authentication versus Authorization

Authentication is a way to prove who you are
It is not the same as what you’re allowed to do—that’s authorization
But most systems use authentication as a step towards authorization
More on this later in the term

Introduction to Cryptography 4 / 47



Finding a Key

Alice wants to talk to Bob, so she searches for his public key

Will she get the right answer?

Introduction to Cryptography 5 / 47



Certificates

A certificate is a digitally signed binding between an identity and a public key.
Will this work?

Introduction to Cryptography 6 / 47



A Look at the Physical World

The certificate has to be issued by
someone you trust
They actually have to do a good job
verifying identity
There are indications in the
certificate showing the proper form

Introduction to Cryptography 7 / 47



History of Certificates

Invented in 1978 by an MIT undergrad, Loren M. Kohnfelder, in his senior
thesis
(Evidence suggests that by the early 1980s, the NSA adopted certificates
for its secure phones)
Adopted for the OSI networking standard’s “directory” project
Their format, known as X.509, is the primary certificate standard used
today

Introduction to Cryptography 8 / 47



What are Certificates Used For?

Verifying website identity
Verifying other encrypted communications sessions
Verifying executables
Verifying and protecting email
More

Introduction to Cryptography 9 / 47



Checking a Certificate in Firefox

All desktop browsers have some way to display sites’ certificates
Introduction to Cryptography 10 / 47



Columbia’s Certificate: The Basics

The certificate includes the organization name and address, and the CA’s
name and address.
Note the top: it shows the certificate chain from the trust anchor.

Introduction to Cryptography 11 / 47



Columbia: Other Essential Data

Note the validity period, actual domain names (called “Subject Alt Names”),
and the key and algorithm.

Introduction to Cryptography 12 / 47



Expiration

Why limit certificate lifetime?
Limit the damage in case of private key compromise
Limit the amount of revocation data that has to be kept
Organizations have finite lifetimes—why leave their abilities around
forever?
And algorithms age

Introduction to Cryptography 13 / 47



Columbia: Policies and Revocation

The certificate has the CA’s policies and revocation mechanisms.

Introduction to Cryptography 14 / 47



How Do You Revoke a Certificate?

Revocation is hard! Verification can be done offline; revocation requires
some form of connectivity
Publish the URL of a list of revoked certificates in a Certificate Revocation
List (CRL)
R One reason for certificate expiration dates; you don’t need to keep
revocation data forever
Online status checking (OCSP)—check a server in real-time for the
certificate’s status
Note: OCSP has privacy implications
NSA secure phones apparently use a flooding algorithm to pass around
lists of revoked certificates—works well because of comparatively closed
communities

Introduction to Cryptography 15 / 47



Why Revoke Certificates?

Private key compromised
Cancel authorization associated with certificate
CA key compromised, e.g., DigiNotar
Algorithm compromised (rare use)

Introduction to Cryptography 16 / 47



Who Issues Certificates?

Who can create this binding?
It’s a trust issue—the other party to the connection has to trust whoever
issued your certificate
Generally, the decision is made by our software
Certificate issuers are called certificate authorities—CAs

Introduction to Cryptography 17 / 47



Certificate Authorities

What makes a CA a CA?
More precisely, how do you know who is authorized to issue a given
certificate?
And why do you trust them?

Introduction to Cryptography 18 / 47



Trust Anchors

All cryptographic trust has to start somewhere
For any given application, you need to pick your trust anchors
For the Web, that choice has been made for you: every OS or browser has
a built-in CA
The collection of hardware, software, people, policies, and procedures to
issue certificates is called a PKI: public key infrastructure

Introduction to Cryptography 19 / 47



Who Should Issue Your Certificates?

Three situations
1 Public-facing website
2 Internal corporate website
3 Your app talking to your server

Introduction to Cryptography 20 / 47



Certificates for Public-Facing Website

Remember that the other party has to trust your CA
That means that everyone else’s browser has to trust the CA you choose
And that in turn means that you have to use a CA trusted by most
browsers in the world
Microsoft can add its own CAs to Edge, Apple can with Safari, Mozilla can
for Firefox, and Google can for Chrome—but even they want their sites to
be reachable by everyone else
Conclusion: you have to trust the common set of CAs, even if you’re really
big

Introduction to Cryptography 21 / 47



Certificates for Internal Websites

In medium or larger-size enterprises, the IT group manages most internal
computers
It generally has the power to install new CAs on employee machines
Accordingly, companies can use their own CAs internally if they want—but
they have to know how to run a CA
(This is sometimes done for firewalls—more on that later in the term)

Introduction to Cryptography 22 / 47



How to Issue Certificates

Typically, user generates a key pair, and presents the public key, identity,
and proof of identity
Certificate Authority (CA) signs the certificate and gives it back
Note: certificates are self-secured; they can be verified offline

Introduction to Cryptography 23 / 47



Mystique

“Organizations are regularly told that they are complex, require ultra-high
security, and perhaps are best outsourced to competent parties. Setting up a
certificate authority (CA) requires a “ceremony”, a term with a technical
meaning but nevertheless redolent of high priests in robes, acolytes with
censers, and more. This may or may not be true in general; for most IPsec
uses, however, little of this is accurate. (High priests and censers are definitely
not needed; we are uncertain about the need for acolytes. . . )”

Introduction to Cryptography 24 / 47



Can You Run Your Own CA?

Yes, but it’s hard
It’s not inherently hard, but the documentation is pretty poor
Two major issues: verifying the identity of the requester, and protecting
the certificate-signing key
There are decent web pages on how to create “self-signed certificates”
Should I give a homework assignment on creating certificates? Maybe. . .

Introduction to Cryptography 25 / 47



Certificate Lifecycle

1 Generate a key pair
2 Request a certificate from a CA
3 Use the certificate
4 The private key is compromised
5 Revoke the certificate

Introduction to Cryptography 26 / 47



Let’s Encrypt

The Electronic Frontier Foundation started a free CA called
letsencrypt.org

It verifies identity by making sure the requester has control of the web site
or the DNS entries
There are automated client tools, e.g., certbot for obtaining certificates

Introduction to Cryptography 27 / 47



Your Own App

If you control the app, you control whom it trusts
Your own app can verify that your own CA issued the certificate your
server is using
You not only don’t need a popular CA, you shouldn’t use one

Introduction to Cryptography 28 / 47



But What About Identity?

Certificates are about binding identity to a public key
What identity should be there?
It depends on the type of certificate

Introduction to Cryptography 29 / 47



Web Site Identities

For web sites, you need to verify
the user-visible name: the
domain name
But many websites have multiple
names—if nothing else,
example.com and
www.example.com

Those names must all be listed in
the subject Alt Names field

Introduction to Cryptography 30 / 47



Other Certificates

Email The sender’s or the recipient’s email address
Executables The vendor

iPhone Executables Apple!

Introduction to Cryptography 31 / 47



Verifying Certificates

Verifying certificates is a complex business
There are many things to check, and many ways to get it wrong
If you can, use a standard library to do this checking

Introduction to Cryptography 32 / 47



The Certificate Itself

Is it syntactically correct?
Is it expired?
Does the resource’s name match what’s in the certificate?
Who signed it?

Introduction to Cryptography 33 / 47



Certificate Chains

Very few CAs sign certificates directly—and that’s the correct decision
CAs issue a lot of certificates, which means that the signing key has to be
online a lot, and hence could be hackable
Instead, they periodically issue themselves an intermediate certificate
with a limited lifespan

R Limit the effect of any compromise!
So: you need to verify the certificate all the way up the chain

Introduction to Cryptography 34 / 47



Certificate Scope

Some intermediate certificates restrict the scope of the certificates they
themselves can sign
Example: if a company has an “official” CA certificate for internal use, that
certificate can only sign other certificates within the company
This has to be verified, too

Introduction to Cryptography 35 / 47



Checking the Cryptography

Are all of the algorithms listed acceptable to you?
Example: you do not want MD5 or short RSA moduli anywhere in the
certificate chain
Does the message or file in question have the right hash?
Does the signature of that hash validate?
You then have to verify the signatures on every certificate up to a CA you
trust

Introduction to Cryptography 36 / 47



Security Analysis: Is PKI Secure?

What are the weak points?
Who can attack them?

Introduction to Cryptography 37 / 47



Attacking the Cryptography

Today’s standards—SHA256; 2048-bit RSA or 256-bit ECDSA—are believed
to be secure
But when web encryption started, people used MD5 and 1024-bit RSA;
both are currently believed to be insecure
Some sites continued using older algorithms well after they were known to
be bad
And there have been exploits—but probably by intelligence agencies

Introduction to Cryptography 38 / 47



Flame

The Flame malware relied on a software vendor using MD5 in its
certificates, well after they should have stopped (and well after Windows
should have rejected such certificates)
MD5 was known to be weak—but Flame used a previously unknown
cryptanalytic mechanism to attack MD5
Most hackers are not expert cryptanalysts. . .
Flame also exploited a design error by Microsoft and hijacked the Windows
Update mechanism

Introduction to Cryptography 39 / 47



Microsoft and MD5

Microsoft has excellent cryptographers; they knew that MD5 was broken
But: they had to preserve backwards compatibility for long enough for all
of their customers to migrate to a stronger hash function
Sites that had upgraded their own infrastructure could still be vulnerable
to Microsoft’s decision

Introduction to Cryptography 40 / 47



Private Key Compromise

Sites’ private keys can be stolen
Stuxnet relied on two different stolen vendor code-signing keys
(Were these keys in HSMs? They should be)

Introduction to Cryptography 41 / 47



Identity Spoofing

In 2001, someone impersonated Microsoft and got two fake code-signing
certificates from VeriSign
VeriSign employees did not check the requester’s credentials properly
But: their back-end audit process caught the problem
Revocation didn’t really wrok then, so Microsoft shipped a patch to ignore
those two certificates

Introduction to Cryptography 42 / 47



Buggy Code

Windows 10 recently had a certificate-checking bug: under some
circumstances, it would accept anything
This bug was found by the NSA, which thought it was so scary it told
Microsoft and issued its own advisory

Introduction to Cryptography 43 / 47

https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF


Blind Trust

Code-signing certificates are (at best) statements of where code came
from, not that it’s harmless
Some hackers have purchased genuine code-signing certificates from
Apple or Microsoft
Victims’ operating systems accept the malware, because it’s digitally
signed
There is a confusion of identity with authorization and/or benignity

Introduction to Cryptography 44 / 47



Hacking

Hackers, believed to be linked to Iran, compromised the DigiNotar and
Comodo CAs
The DigiNotar private keys were stored in an HSM, but the attacker
controlled the computer that controlled the HSM, and hence was able to
get it to sign bogus certificates
The attack put DigiNotar out of business

Introduction to Cryptography 45 / 47



Conclusions

Certificates are useful but they aren’t panaceas
Buggy code can beat good crypto
Note the analysis: at some point, every piece of the security chain for
certificates has been compromised

Introduction to Cryptography 46 / 47



Questions?

(American redstart, Morningside Park, September 21, 2020)


	Certificates

