TLS: Transport Layer Security

@O0

BY NC


https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

The Early History of the Web

@ It's 1994

@ Netscape has the first commercial web browser (which they’re giving
away) and the first commercial web server, which they want to sell

@ They want e-commerce to exist, but for that to happen people have to feel
secure sending their credit card numbers over the Internet

1= People were already worried about hackers

@ Answer: encryption
@ But how? They brought in a respected cryptographer, Taher Elgamal, to
answer that.



Three Obvious—but Impossible—Approaches

@ Packet-layer encryption, similar to what became IPsec
@ Transport-layer encryption, similar to the older SP4 protocol
@ Digitally signed purchases, with a certificate linked to credit card numbers

None of these were feasible



The State of Computing

@ This was pre-Windows 95—and Windows 3.1 did not come with a TCP/IP
stack, though you could buy an add-on package from another vendor

@ Home Internet use was exclusively by dial-up, with a maximum speed of
28.8K bps

@ There was no such thing as e-commerce, so no one knew if it could
work—Netscape was a startup

@ Computers were relatively slow, DES and RC4 were the only encryption
algorithms available in the US

@ Public key cryptography in general, and RSA in particular, were covered by
U.S. patents



Packet-Layer Encryption

@ A strong solution—can protect all traffic in or out of a machine
@ (We’'ll discuss this in detail much later in the semester)

@ Generally requires access to kernel or device driver code, though it can
sometimes be done in other ways if interfaces are standard

@ The real bottleneck: corporate servers, which ran vendor-supplied
operating systems; vendors had no incentive to cooperate with a small,
unknown start-up

@ Conclusion: not feasible for Netscape



Transport-Layer (TCP) Encryption

@ At least as intrusive as network-layer encryption
@ No standardized interfaces for third-party solutions
@ Conclusion: not feasible for Netscape



Digitally-Signed Credit Card Transactions

@ In a strong sense, the best possible answer—it protected transactions, not
traffic

@ The actual items purchased could be part of the signed data
@ Vendors would have something strong to show to a judge

@ But—the users’ certificates would have to be linked to their credit cards for
vendors to be paid promptly

Netscape couldn’t do that; it wasn’t a bank
Banks didn’t understand e-commerce

There was no back-end infrastructure for merchants to use to collect
payments

Existing retailers understood and could process credit cards, not these
weird digital signatures

@ Conclusion: not feasible for Netscape



SSL: Secure Socket Layer

@ Solution: do encryption in the applications—the browser and the
server—above TCP

@ Use this to send credit card information to merchants
@ Requires special code in these applications—but Netscape controlled them

@ Operating system-independent; does not require deals with banks or OS
vendors

Architecturally, it was the worst solution, with exactly one advantage: it was
doable



SSL History

@ SSL 1.0 never saw the light of day
@ Netscape released SSL 2.0 in 1995
@ In 1996, they replaced it with SSL 3.0, to fix some security flaws

@ In 1999, the IETF published a variant named TLS (Transport Layer Security)
1.0

@ Development has continued; TLS 1.3 was released two years ago



Design Principles

@ General-purpose encryption

@ Assume arbitrarily powerful enemies

@ Must provide confidentiality and integrity

@ Run over TCP; let it handle (benign) error correction and retransmission
@ Flexibility to handle evolving needs and algorithms

@ Adapt to the real world

@ The result: the most important encryption mechanism on the Internet—but
a very complex protocol



Performance

@ Minimize number of round trips—communications are limited by the speed
of light, which is finite!
e The circumference of the Earth is 40,000 km
@ The speed of light in fiber is %c
e The minimum latency to reach a server halfway around the world is thus 100
ms., which is perceptible—and fiber isn’t direct

@ Public key operations are slow; minimize them (especially in 1994)

@ HTTP is stateless—but if both sides can retain some encryption state,
resuming a session can be much faster



Statelessness

@ Every HTTP transaction is independent—the connection between browser
and server is closed after each download

@ (No longer strictly true)

@ Something is needed to link together different web views, for logins,
preferences, shopping carts, etc.

@ This was the original purpose for cookies—their use for tracking and
advertising came later

@ SSL had to live in that world



Flexibility

@ Negotiate version of SSL (and later TLS)
@ Algorithm agility; selection negotiated between the two ends

e Accommodate newer algorithms
e Permit different cost/security tradeoffs
e US export rules

@ Certificates from either side, both sides, or neither
@ Forward secrecy (originally optional)



Forward Secrecy

@ Alice sends Bob a message encrypted to Bob’s public key

@ An attacker records it and later hacks Bob’s system to steal his private key
@ They can now read all old messages

@ Forward secrecy is a way to prevent that



Achieving Forward Secrecy

@ Alice and Bob first do a Diffie-Hellman exchange:

A—-B: g”“modp
B—A: gBmodp

@ g"8 mod p is now a shared secret
@ Authenticate this exchange using digital signatures

@ Once ry and rg are destroyed—and they’re one-time use random numbers,
not long-term keys—there is no way to reconstruct this exchange

@ Old conversations are safe, even if Bob is later hacked



Compression

@ SSL optionally performed compression. Why?



Compression

@ SSL optionally performed compression. Why?

@ Remember the slow modem speeds—compression was very important for
performance

@ Modems, in fact, could do compression
@ But you can’t compress ciphertext! Why not?



Compression

@ SSL optionally performed compression. Why?

@ Remember the slow modem speeds—compression was very important for
performance
@ Modems, in fact, could do compression
@ But you can’t compress ciphertext! Why not?
@ Ciphertext is random, i.e., high entropy, and hence is not compressible
= You have to compress before you encrypt

=

@ N.B.: JPGs are also high entropy, but there were very few images
transmitted back then—digital cameras were very rare and quite
expensive



Versioning

@ Many protocols include version numbers, to permit evolution while
maintaining backwards compatibility.

@ It turns out to be surprisingly hard to get that right
@ Define the semantics of the version field in the very first release

@ This is especially tricky if you use major.minor versions or
major.minor.update—but it’s crucially important



Downgrade Attacks

@ Suppose that version 1.3 of a cryptographic protocol has a security risk, so
you upgrade to 1.4

@ But you need to support communication with sites that haven’t upgraded,
so you advertise both, 1.4 preferred, in your negotiation:
A—B:{1.4,1.3}

@ Bob also supports both and should respond with {1.4}

@ But an attacker replaces your message with {1.3}, which Bob of course
accepts

@ Defending against this is tricky and protocol-dependent (and out of scope
for this class); it often involves things like signatures over the proposed
versions and the negotiated key



Changes Since 1994

@ Some of the changes are obvious: add newer ciphers, e.g., AES and elliptic
curve, increase key lengths, delete insecure primitives (DES, MD5, RC4)

@ Things like compression are no longer needed

@ Adaptations to buggy implementations

@ Support for virtual hosts: multiple websites at one IP address
@ Make it harder for governments to spy



Questions?

(Great blue heron, Central Park, February 16, 2019)



	Background
	Design

