
TLS: Transport Layer Security

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


The Early History of the Web

It’s 1994
Netscape has the first commercial web browser (which they’re giving
away) and the first commercial web server, which they want to sell
They want e-commerce to exist, but for that to happen people have to feel
secure sending their credit card numbers over the Internet

R People were already worried about hackers
Answer: encryption
But how? They brought in a respected cryptographer, Taher Elgamal, to
answer that.

TLS: Transport Layer Security 2 / 20



Three Obvious—but Impossible—Approaches

Packet-layer encryption, similar to what became IPsec
Transport-layer encryption, similar to the older SP4 protocol
Digitally signed purchases, with a certificate linked to credit card numbers

None of these were feasible

TLS: Transport Layer Security 3 / 20



The State of Computing

This was pre-Windows 95—and Windows 3.1 did not come with a TCP/IP
stack, though you could buy an add-on package from another vendor
Home Internet use was exclusively by dial-up, with a maximum speed of
28.8K bps
There was no such thing as e-commerce, so no one knew if it could
work—Netscape was a startup
Computers were relatively slow, DES and RC4 were the only encryption
algorithms available in the US
Public key cryptography in general, and RSA in particular, were covered by
U.S. patents

TLS: Transport Layer Security 4 / 20



Packet-Layer Encryption

A strong solution—can protect all traffic in or out of a machine
(We’ll discuss this in detail much later in the semester)
Generally requires access to kernel or device driver code, though it can
sometimes be done in other ways if interfaces are standard
The real bottleneck: corporate servers, which ran vendor-supplied
operating systems; vendors had no incentive to cooperate with a small,
unknown start-up
Conclusion: not feasible for Netscape

TLS: Transport Layer Security 5 / 20



Transport-Layer (TCP) Encryption

At least as intrusive as network-layer encryption
No standardized interfaces for third-party solutions
Conclusion: not feasible for Netscape

TLS: Transport Layer Security 6 / 20



Digitally-Signed Credit Card Transactions

In a strong sense, the best possible answer—it protected transactions, not
traffic
The actual items purchased could be part of the signed data
Vendors would have something strong to show to a judge
But—the users’ certificates would have to be linked to their credit cards for
vendors to be paid promptly
Netscape couldn’t do that; it wasn’t a bank
Banks didn’t understand e-commerce
There was no back-end infrastructure for merchants to use to collect
payments
Existing retailers understood and could process credit cards, not these
weird digital signatures
Conclusion: not feasible for Netscape

TLS: Transport Layer Security 7 / 20



SSL: Secure Socket Layer

Solution: do encryption in the applications—the browser and the
server—above TCP
Use this to send credit card information to merchants
Requires special code in these applications—but Netscape controlled them
Operating system-independent; does not require deals with banks or OS
vendors

Architecturally, it was the worst solution, with exactly one advantage: it was
doable

TLS: Transport Layer Security 8 / 20



SSL History

SSL 1.0 never saw the light of day
Netscape released SSL 2.0 in 1995
In 1996, they replaced it with SSL 3.0, to fix some security flaws
In 1999, the IETF published a variant named TLS (Transport Layer Security)
1.0
Development has continued; TLS 1.3 was released two years ago

TLS: Transport Layer Security 9 / 20



Design Principles

General-purpose encryption
Assume arbitrarily powerful enemies
Must provide confidentiality and integrity
Run over TCP; let it handle (benign) error correction and retransmission
Flexibility to handle evolving needs and algorithms
Adapt to the real world
The result: the most important encryption mechanism on the Internet—but
a very complex protocol

TLS: Transport Layer Security 10 / 20



Performance

Minimize number of round trips—communications are limited by the speed
of light, which is finite!

The circumference of the Earth is 40,000 km
The speed of light in fiber is 2

3c
The minimum latency to reach a server halfway around the world is thus 100
ms., which is perceptible—and fiber isn’t direct

Public key operations are slow; minimize them (especially in 1994)
HTTP is stateless—but if both sides can retain some encryption state,
resuming a session can be much faster

TLS: Transport Layer Security 11 / 20



Statelessness

Every HTTP transaction is independent—the connection between browser
and server is closed after each download
(No longer strictly true)
Something is needed to link together different web views, for logins,
preferences, shopping carts, etc.
This was the original purpose for cookies—their use for tracking and
advertising came later
SSL had to live in that world

TLS: Transport Layer Security 12 / 20



Flexibility

Negotiate version of SSL (and later TLS)
Algorithm agility; selection negotiated between the two ends

Accommodate newer algorithms
Permit different cost/security tradeoffs
US export rules

Certificates from either side, both sides, or neither
Forward secrecy (originally optional)

TLS: Transport Layer Security 13 / 20



Forward Secrecy

Alice sends Bob a message encrypted to Bob’s public key
An attacker records it and later hacks Bob’s system to steal his private key
They can now read all old messages
Forward secrecy is a way to prevent that

TLS: Transport Layer Security 14 / 20



Achieving Forward Secrecy

Alice and Bob first do a Diffie-Hellman exchange:

A→ B : grA mod p
B→ A : grB mod p

grArB mod p is now a shared secret
Authenticate this exchange using digital signatures
Once rA and rB are destroyed—and they’re one-time use random numbers,
not long-term keys—there is no way to reconstruct this exchange
Old conversations are safe, even if Bob is later hacked

TLS: Transport Layer Security 15 / 20



Compression

SSL optionally performed compression. Why?

Remember the slow modem speeds—compression was very important for
performance
Modems, in fact, could do compression
But you can’t compress ciphertext! Why not?
Ciphertext is random, i.e., high entropy, and hence is not compressible

R You have to compress before you encrypt
N.B.: JPGs are also high entropy, but there were very few images
transmitted back then—digital cameras were very rare and quite
expensive

TLS: Transport Layer Security 16 / 20



Compression

SSL optionally performed compression. Why?
Remember the slow modem speeds—compression was very important for
performance
Modems, in fact, could do compression
But you can’t compress ciphertext! Why not?

Ciphertext is random, i.e., high entropy, and hence is not compressible

R You have to compress before you encrypt
N.B.: JPGs are also high entropy, but there were very few images
transmitted back then—digital cameras were very rare and quite
expensive

TLS: Transport Layer Security 16 / 20



Compression

SSL optionally performed compression. Why?
Remember the slow modem speeds—compression was very important for
performance
Modems, in fact, could do compression
But you can’t compress ciphertext! Why not?
Ciphertext is random, i.e., high entropy, and hence is not compressible

R You have to compress before you encrypt
N.B.: JPGs are also high entropy, but there were very few images
transmitted back then—digital cameras were very rare and quite
expensive

TLS: Transport Layer Security 16 / 20



Versioning

Many protocols include version numbers, to permit evolution while
maintaining backwards compatibility.
It turns out to be surprisingly hard to get that right
Define the semantics of the version field in the very first release
This is especially tricky if you use major.minor versions or
major.minor.update—but it’s crucially important

TLS: Transport Layer Security 17 / 20



Downgrade Attacks

Suppose that version 1.3 of a cryptographic protocol has a security risk, so
you upgrade to 1.4
But you need to support communication with sites that haven’t upgraded,
so you advertise both, 1.4 preferred, in your negotiation:
A→ B : {1.4,1.3}
Bob also supports both and should respond with {1.4}
But an attacker replaces your message with {1.3}, which Bob of course
accepts
Defending against this is tricky and protocol-dependent (and out of scope
for this class); it often involves things like signatures over the proposed
versions and the negotiated key

TLS: Transport Layer Security 18 / 20



Changes Since 1994

Some of the changes are obvious: add newer ciphers, e.g., AES and elliptic
curve, increase key lengths, delete insecure primitives (DES, MD5, RC4)
Things like compression are no longer needed
Adaptations to buggy implementations
Support for virtual hosts: multiple websites at one IP address
Make it harder for governments to spy

TLS: Transport Layer Security 19 / 20



Questions?

(Great blue heron, Central Park, February 16, 2019)


	Background
	Design

