
Memory Safety

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

“If our software is buggy, what
does that say about its security?”

—Robert H. Morris

Memory Safety 2 / 54

It’s All About the Software

Most penetrations are due to buggy software
Crypto won’t help there: bad software defeats good crypto
Design matters, too

Memory Safety 3 / 54

Security Isn’t About Cryptography

Cryptography is necessary
But it’s possible for cryptographic software to have bugs, too
In one recent study, 80% of mobile apps had problems with their
cryptography

Memory Safety 4 / 54

Three Separate Aspects

Enforcing security
Avoiding bugs
Proper components and proper composition

Memory Safety 5 / 54

Avoiding Bugs

Many simple bugs can be exploited to cause security problems
The C language is a large part of the problem
One big issue: memory safety

Memory Safety 6 / 54

Memory Safety

For true memory safety, we need several properties:
1 No pointer can ever be dereferenced outside its legal bounds
2 Type safety: pointers can only point to objects of the appropriate type,

within valid bounds: int* pointers only refer to integers, char* to
characters, etc.

3 Only pointers to functions can be invoked as functions (or otherwise
executed)

4 Etc.
C/C++ do not qualify

Memory Safety 7 / 54

C and C++ are not Memory-Safe

int v[5], x;
int p = v;
x = *(p+5);

v can only legally point to
v[0]...v[4], but C doesn’t enforce
this

int q, *qp = &q;
char cp
cp = *(char *)qp;

qp is supposed to point only to
integers, but a language feature lets
it point to characters

union {
int a;
float b;
char c[5];

} u, *unp;
unp = &u;

We can write unp.a, unp.b, and
unp.c—unp can point to anything

Memory Safety 8 / 54

You Can Even Set Function Pointers to Arrays

int (*fp)(int);
char buf[1024];
fp = (void *)buf;
(*fp)(1024);

Note: I fed all of these examples to gcc, and it didn’t even give a warning. . .

Memory Safety 9 / 54

Serious Consequences

C’s lack of memory safety and type safety have led to serious
consequences
The lack of array-bounds checking is notorious
The lack of safe memory allocation and freeing has also been very
problematic

Memory Safety 10 / 54

Subscript Out-of-Bounds: Buffer Overflows

Once responsible for about half of all security vulnerabilities
Fundamental problems:

Character strings in C are actually arrays of chars
There is no array bounds checking done in C

Attacker’s goal: overflow the array in a controlled fashion

Memory Safety 11 / 54

Stack Frame

High memory address

0x98 0x76 0x54 0x54
	

Return Addr
	

Local variables

r l d \0

o w o

h e l l











Buffer

(Other local variables)

Low memory address

When a function is called, the
return address is stored on the
stack. Lower in memory, all
variables local to that function
are stored.

Memory Safety 12 / 54

Buffer Overflow

High memory address

l o w \0
	

Return Addr

v e r f
	

Local variables

a n o

i s

T h i s











Buffer

(Other local variables)

Low memory address

If the array bounds are
exceeded, the return address
can be overwritten.

Memory Safety 13 / 54

Buffer Overflow Attack

High memory address

0x23 0x45 0x67 0x89
	

Return Addr

0x0D 0x0E 0x0F 0x10

0x09 0x0A 0x0B 0x0C

0x05 0x06 0x07 0x08

0x01 0x02 0x03 0x04











Buffer

(Other local variables)

Low memory address

Put code in the early part of
the buffer, then change the
return address to point to it.
When the function exits, the
injected code is executed.

Memory Safety 14 / 54

How Can Such Things Happen?

C has lots of built-in functions that don’t check array bounds
Programmers frequently don’t check, either
The attacker supplies too-long input

Memory Safety 15 / 54

Sample Problematic Code

char line[512];

...

gets(line);

That’s from the 4.3BSD fingerd command, exploited by the first Internet
Worm in 1988. . .

Memory Safety 16 / 54

Bad versus Good

gets() fgets()
strcpy() strncpy()
strcat() strncat()
sprintf() snprintf()

Memory Safety 17 / 54

Java vs. C

Java checks array bounds
C# checks array bounds
Go checks array bounds
Python checks array bounds
More or less everything but C and C++ check. . .

Memory Safety 18 / 54

Indirect Buffer Overflows

void f(char *s)
{

sprintf(s, "....");
}

void g()
{

char buf[128];

f(buf);
}

Function f doesn’t even know the size of the array!

Memory Safety 19 / 54

Canaries

Compiler trick—available for gcc and Microsoft compilers
Generate a random “canary” value at the start of each program execution
Insert that value between the return address and the rest of the stack
frame
Check if it’s intact before returning
Any stack-smash attack will have to overwrite the canary to get to the
return address
Remember: the canary’s value is different for each run of the program

Memory Safety 20 / 54

Buffer Overflow Attack

High memory address

0xAB 0xCD 0xEF 0xFF
	

Return Address

0x23 0x45 0x67 0x89
	

Canary

0x0D 0x0E 0x0F 0x10

0x09 0x0A 0x0B 0x0C

0x05 0x06 0x07 0x08

0x01 0x02 0x03 0x04











Buffer

(Other local variables)

Low memory address

If the random canary is
overwritten, the program will
abort.
Now standard in C/C++
compilers

Memory Safety 21 / 54

Heap Overflow Attacks

You can’t easily put canaries in the heap area
Return addresses are on the stack, not the heap—does this make buffer
overflows in heap variables safe?

Nope
The heap often contains pointers to functions—especially true for C++,
with virtual functions
Use a buffer overflow to inject code and then change such a pointer to
point to it
When the virtual function is called. . .

Memory Safety 22 / 54

Heap Overflow Attacks

You can’t easily put canaries in the heap area
Return addresses are on the stack, not the heap—does this make buffer
overflows in heap variables safe?
Nope
The heap often contains pointers to functions—especially true for C++,
with virtual functions
Use a buffer overflow to inject code and then change such a pointer to
point to it
When the virtual function is called. . .

Memory Safety 22 / 54

It Was Known

What would we think of a sailing enthusiast who wears his life-jacket
when training on dry land but takes it off as soon as he goes to sea?
Fortunately, with a secure language, the security is equally tight for
production and for debugging.

Hints on Programming Language Design, C.A.R. Hoare, 1973

Memory Safety 23 / 54

Many Defenses

Many defenses have been tried
Always, the attackers have found a new variant
It is unlikely that we can ever prevent memory attacks on C/C++

Memory Safety 24 / 54

ASLR: Address Space Layout Randomization

Put stack at different random location each time program is executed
Put heap at different random location as well
Defeats attempts to address known locations
But—makes debugging harder

Memory Safety 25 / 54

Non-Executable Data Areas

Modern computer architectures have permission bits for memory pages:
can only execute code if the “execute” bit is set
Defense: on pages with the “write” bit set, don’t set “execute”
The stack is writable, so code injected by the attacker won’t be executable
Called “DEP” (Data Execution Prevention) or “W ⊕ X”

Memory Safety 26 / 54

Checking Code

Look for suspect calls
Use static checkers
Use a better compiler that can insert bounds-checking (but that’s very
hard if you want binary compatibility)

Memory Safety 27 / 54

Stack versus Heap or BSS Storage

Easiest to exploit if the buffer is on the stack
Exploits for heap- or BSS-resident buffers are also possible, though they’re
harder
Heap and BSS attacks not preventable with canaries (but there are
analogous techniques to protect malloc()-allocated storage)
Some operating systems can make such memory pages non-executable,
which is a big help—but that breaks some applications

Memory Safety 28 / 54

Issues for the Attacker

Finding vulnerable programs
NUL bytes
Uncertainty about addresses

Memory Safety 29 / 54

Finding Vulnerable Programs

Use nm and grep to spot use of dangerous routines
Probe via very-long inputs
Look at source or disassembed/decompiled code

Memory Safety 30 / 54

NUL Bytes

C strings can’t have embedded 0 bytes
Some instructions do have 0 bytes, perhaps as part of an operand
Solution: use different instruction sequence

Memory Safety 31 / 54

Address Uncertainty

Pad the evil instructions with NOPs
This is called a landing zone or a NOP sled
Set the return address to anywhere in the landing zone

Memory Safety 32 / 54

Buffer Overflow: Summary

You must check buffer lengths
Where you can, use the safer library functions
Write your own safe string library (there’s no commonly-available
standard)
Use C++ and class String

Use Java
Use anything but raw C!

Memory Safety 33 / 54

History of Buffer Overflows

Long-recognized as a security issue
First very visible exploit: Robert T. Morris’ Internet Worm, November 1988.
Popularized by Aleph One in November 1996; serious threat since then

R The attack was theoretically difficult, but there are canned exploit kits
available

Memory Safety 34 / 54

Hoare’s Turing Award Lecture, 1980

The first principle was security: . . . A consequence of this principle is that
every occurrence of every subscript of every subscripted variable was on
every occasion checked at run time against both the upper and the lower
declared bounds of the array. . . . I note with fear and horror that even in 1980,
language designers and users have not learned this lesson. In any respectable
branch of engineering, failure to observe such elementary precautions would
have long been against the law.

Memory Safety 35 / 54

Can We Afford Array-Bounds Checking?

Of course—spend the Moore’s Law benefit on something besides better
video games
Compiler optimizations often make the expense a lot less than you’d think
It’s hard to do in C, though, because of array vs. pointer semantics
Things like *p++ = *q++ are hard to check efficiently
A bounds-checking C compiler has been written, but it’s largely unused

Memory Safety 36 / 54

Use-After-Free Attacks

C has lousy memory management:
p = malloc((size_t) 1024);

...
free((void *)p);

But nothing stops the programmer from incorrectly using p after the call to
free()

Yes, this can cause problems

Memory Safety 37 / 54

Launching the Attack

Find a code path that causes a new malloc() that will reuse that same
area
Have it fill the area with attacker-controlled data
Cause the program to use that dangling pointer
It sounds difficult, but it’s been used a lot in practice

Memory Safety 38 / 54

Reported Bugs in Chromium, 2011–2013

Severity Use-after- Stack Heap Others
free overflow overflow

Critical 13 0 0 0
High 582 12 107 11
Medium 80 5 98 12
Low 5 0 3 1
Total 680 17 208 24

Memory Safety 39 / 54

Defenses

Best, of course, is to use a language that has automatic garbage collection
Good programming habits can help:

free((void *)p);
p = NULL;

Memory leak detectors can also help sometimes

Memory Safety 40 / 54

Return-Oriented Programming

The previous attacks require the the attacker to actually inject code
Defenses such as W ⊕ X mean that injected code isn’t executable
Attacker countermove: return-oriented programming (ROP)

Memory Safety 41 / 54

Principles of ROP

There are lots of segments of bytes in, e.g., the C library that (especially
on the Intel x86 architecture) form useful instruction sequences and end in
a RET (pop the stack and return) instruction
Such a sequence is called a gadget
Find a set of gadgets that, strung together, do something “useful”
Via a buffer overflow or some such, push the addresses of your string of
gadgets onto the stack
When the function returns, it will execute the first gadget; it will return to
the second, etc.
No new code is needed!

Memory Safety 42 / 54

The Role of Specifications

Contrast this:
“File names may be up to 1024 bytes long”

with
“File names may be up to 1024 bytes long; longer file names must be
rejected”

The second form alerts the programmer to the real requirement
Just as important, the second form alerts the tester to the requirement
Testing is done against requirements!

Memory Safety 43 / 54

Format String Errors

Suppose str is input to the program
Wrong:

printf(str);

Right:
printf("%s", str);

Format strings can be dangerous. . .
Note: other functions (i.e., syslog) also take format strings

Memory Safety 44 / 54

The %n Problem

Rather complex; I won’t try to explain the details here
Fundamental issue: %n writes to a variable the number of bytes printed
thus far
The statement

printf("Hello\n%n", &cnt)
stores a 6 in integer variable cnt

This can be used to overwrite memory locations
Use tricks involving other references to (non-existent!) other arguments to
let you write to someplace “useful”

Memory Safety 45 / 54

Another Minor Issue

Minor problem: metacharacters can confuse log files
Here’s an embedded newline in a username

R 12:34:56 Permission denied: user
12:34:xx Watch this crash!

Memory Safety 46 / 54

The Underlying Issues

Problem 1: C has strange semantics
The only defense is to know the language thoroughly
You also have to know possible exploits
There are integer overflow attacks, too
Problem 2: programs don’t always validate their inputs

Memory Safety 47 / 54

Input Validation

Trust nothing supplied by the user
Must define inputs before they can be checked
“A program whose behavior has not been specified cannot be buggy, only
surprising.”
Example: is a newline a valid character in a username?

Memory Safety 48 / 54

Defenses

Rigorously check all inputs against the specification
Before that, of course, you need a spec
(Specs can be buggy, too)
Alternatively, use an earlier filter or check against a known-good list

Memory Safety 49 / 54

Filtering

Example: fgets() stops at a newline; you can’t find any embedded

R But watch for unterminated buffer—what if the input line is too long?
Note that argv has no such guarantee
Email: check recipient name against valid user list—no funny characters
there

Memory Safety 50 / 54

Being Careful Near the Shell

If user input is being passed to the shell, be especially careful
Watch for popen() and system()

Dangerous characters include:
‘~#$ˆ&(){}[];’"<>?|\

That’s most of the special characters!
You’re always much better off with a “good” list than a “bad” list
Example: on some Unix systems, ˆ was treated the same as |. Why?
Because on some models of Teletype—the ancient hard-copy terminal!—ˆ
printed as ↑, which looked similar to ˆ

Memory Safety 51 / 54

Knowing the Semantics

Sometimes check that there are no / characters in a program name
Why? To ensure that the reference is to a given directory
Do you need to check \ as well?

R Will the program ever run on Windows? Note that URLs on Windows use /,
but the file system uses \

Memory Safety 52 / 54

Summary

Trust nothing
Specify acceptable inputs
Check everything
Understand the semantics of anything you invoke
Try to use a better language than C

Memory Safety 53 / 54

Questions?

(Double-crested cormorant, Morningside Park, September 6, 2020)

