
Denial of Service Attacks

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

The Problem

Denial of Service Attacks 2 / 52

What is Security?

The standard definition: CIA
Confidentiality
Integrity

R Availability

Thus far, we’ve concentrated on confidentiality and integrity—but availability
can be a problem, too. This is often called a denial of service (DoS) attack.

Denial of Service Attacks 3 / 52

How to Attack Availability

Two approaches:
Disrupt a system
Overload a system

Constraints:
Local or remote?
Your resources or someone else’s?
Privileged or unprivileged?

Denial of Service Attacks 4 / 52

Too Trivial to Matter?

sudo rm -rf /

Local access
Requires privilege

Denial of Service Attacks 5 / 52

Some Unprivileged Denial of Service Attacks

$ while true
do

mkdir x
cd x

done

or

$ while true
do

yes This is a DoS Attack &
done

Denial of Service Attacks 6 / 52

RAM and Paging

All modern systems implement virtual memory—which, among other
things, lets the computer pretend to have far more RAM than it really has
This comes at a cost in performance
When the active virtual memory/real memory ratio gets too high, the
system starts thrashing

If deliberate, it’s an attack

Denial of Service Attacks 7 / 52

Resources Attacked

CPU time
RAM
Disk space or other file system components
Files
Network bandwidth
Computer hardware!

All have been attacked

Denial of Service Attacks 8 / 52

Limits

To defend against these attacks, operating systems implement resource
conumption limits
Example: the setrlimit() and quotactl() system calls on Linux
Example: the scheduler in the kernel allocates CPU time among processes

Denial of Service Attacks 9 / 52

The Ulimit Command

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 31505
max locked memory (kbytes, -l) 65536
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 31505
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Denial of Service Attacks 10 / 52

Viruses

Most viruses were denial of service attacks
Early ones were mostly harmless—but they annoyed people
The first virus in the wild, Elk Cloner, displayed this message every 50th
reboot

Elk Cloner: The program with a personality

It will get on all your disks
It will infiltrate your chips
Yes, it’s Cloner!

It will stick to you like glue
It will modify RAM too
Send in the Cloner!

It attacked people’s time!
Denial of Service Attacks 11 / 52

Destructive Viruses

Some viruses were destructive
Example: CIH (AKA the Chernobyl Virus) would overwrite part of the disk
and (on some PCs) part of the BIOS
Result: loss of data and possibly functional loss of the computer itself
(Note: both were often recoverable, with knowledge and effort)
A denial of service attack against the disk and the hardware

Denial of Service Attacks 12 / 52

The Role of Privilege

Unprivileged programs can’t launch some of these attacks
This is why even single-person systems have user log in as non-root
But a virus running with your privileges can delete your files
(And it’s why you shouldn’t do casual stuff as root. . .)

Denial of Service Attacks 13 / 52

Worms

Unlike viruses (which, way back when, mostly spread by manual sharing of
floppy disks), worms spread by themselves over the network
They could have all of the effects of viruses—and they could consume
network bandwidth
Worms could launch denial of service attacks on the Internet

Denial of Service Attacks 14 / 52

The SQL Slammer Worm

Exploited a bug in Microsoft’s SQL server
Used UDP, not TCP — a single 376-byte packet to UDP port 1434 could
infect a machine!
Use of UDP instead of TCP let it spread much faster — one packet, from a
forged source address, instead of a three-way handshake, payload
transmission, and a three-packet close() sequence
No direct damage, but it clogged network links very quickly

Denial of Service Attacks 15 / 52

Denial of Travel Attack

The Blaster worm shut down CSX Railroad’s signaling network
(You can run trains safely without signals, but at much lower capacity and
with many more people involved)
Blaster also shut down Air Canada’s check-in terminals; Slammer affected
Continental Airlines

Denial of Service Attacks 16 / 52

Spread Patterns

Worms tend to exhibit exponential growth patterns
They start slow, but get very big very quickly
Equation: y = ekt, where t is time
If k is small, it spreads more slowly — but it still grows

Denial of Service Attacks 17 / 52

Exponential Growth

Denial of Service Attacks 18 / 52

There’s a Ceiling

Worms run out of vulnerable hosts
Doesn’t matter much if a machine is
infected twice (and worms often
prevent that)
Actual graph is a logistic curve:

y = a
1+me−t/τ

1+ ne−t/τ

Denial of Service Attacks 19 / 52

What Happened to DoS by Worm?

The hackers have learned to make money from their evil deeds
Spamming, phishing, credit card theft, ransomware, and more
Taking down the Internet is bad for their business
The Internet is up because the attackers want it to be. . .

Denial of Service Attacks 20 / 52

Ransomware

Penetrate a system or a site
Encrypt user files
If possible, encrypt backups, too
Display a message
When (if) the user pays (generally via Bitcoin or the like), they receive a
decryption key
(Well, sometimes they don’t. . .)
Denial of service for profit!

Denial of Service Attacks 21 / 52

Cryptojacking: Malicious Cryptocurrency Mining

Mining cryptocurrencies, e.g., Bitcoin, takes a lot of CPU power
Hack into other folks’ computers and let them do the mining for you
Bonus: CPU consumption uses electricity, both directly and (often) for
cooling—you steal their electricity, too
A DoS attack on your CPU cycles and your wallet

Better variant: don’t bother hacking; just buy web ads that contain
JavaScript that does the mining
The legal variant: Salon Magazine used to ask non-subscribers’ consent to
load such JavaScript

Denial of Service Attacks 22 / 52

Cryptojacking: Malicious Cryptocurrency Mining

Mining cryptocurrencies, e.g., Bitcoin, takes a lot of CPU power
Hack into other folks’ computers and let them do the mining for you
Bonus: CPU consumption uses electricity, both directly and (often) for
cooling—you steal their electricity, too
A DoS attack on your CPU cycles and your wallet
Better variant: don’t bother hacking; just buy web ads that contain
JavaScript that does the mining

The legal variant: Salon Magazine used to ask non-subscribers’ consent to
load such JavaScript

Denial of Service Attacks 22 / 52

Cryptojacking: Malicious Cryptocurrency Mining

Mining cryptocurrencies, e.g., Bitcoin, takes a lot of CPU power
Hack into other folks’ computers and let them do the mining for you
Bonus: CPU consumption uses electricity, both directly and (often) for
cooling—you steal their electricity, too
A DoS attack on your CPU cycles and your wallet
Better variant: don’t bother hacking; just buy web ads that contain
JavaScript that does the mining
The legal variant: Salon Magazine used to ask non-subscribers’ consent to
load such JavaScript

Denial of Service Attacks 22 / 52

The Malign Power of the Internet

Sometimes, an attacker doesn’t have enough resources to launch a DoS
attack
The solution: use the Internet
More precisely, use the power of many machines to attack a victim
This is called a distributed denial of sevice (DDoS) attack

Denial of Service Attacks 23 / 52

Simplest DDoS Attack

Build a network of hacked computers
Set up a command-and-control (C2) network
Send one command packet: “Flood this target”
The C2 network distributes the command to all of the “bots” (sometimes
called “zombies”)
All of the bots send traffic to the target, clogging its network link

Denial of Service Attacks 24 / 52

The Effects of DDoS

��

������

�� �� ��

�� �� �� ��

The closer you are
to the target, the
more the links are
clogged. The
victim’s link is
almost completely
overloaded.

Denial of Service Attacks 25 / 52

Dodging Filters

If the DDoS traffic came from fixed source addresses, the attack traffic
could be filtered
Countermove: use forged, random source addresses
If the attack targeted a fixed port number, the attack traffic could be
filtered
Countermove: use random destination port numbers

Denial of Service Attacks 26 / 52

DDoS for Mischief

The early DDoS attacks were mostly for mischief
In late 1999, in recovered source code, comments were found suggesting
a planned attack at midnight, December 31, 1999
Remember hearing about Y2K? Imagine if the Internet was down. . .

Denial of Service Attacks 27 / 52

DDoS for Profit

Warn a site that they’ll be hit with a DDoS attack if they don’t pay
Launch a short attack to prove you can do it
Especially vulnerable: sports gambling sites

Denial of Service Attacks 28 / 52

DDoS for Political Reasons

Iran allegedly launched DDoS attacks against several U.S. banks
“The attacks disabled victim bank websites, prevented customers from
accessing their accounts online and collectively cost the victims tens of
millions of dollars in remediation costs as they worked to neutralize and
mitigate the attacks on their servers.”

Denial of Service Attacks 29 / 52

Web-Based Flooding

Create some JavaScript that repeatedly connects to a target site
Tell your followers “click on this link to attack our enemies”
If lots of folks do that, the target will be flooded with normal traffic

Denial of Service Attacks 30 / 52

SYN Flooding

Remember the TCP three-way handshake
The client sends a SYN packet; the server
replies with a SYN-ACK
The client replies to the SYN-ACK with an
ACK
Until that third message is received, the
server’s side is half-open
There is a limit to the number of half-open
connections that are permitted
If that number is exceeded, legitimate
clients can’t connect

SYN
(seq=XX)

SYN, ACK
(seq=YY, ACK=XX+1)

ACK
(seq=XX+1, ACK=YY+1)

Data
(seq, ack)

Denial of Service Attacks 31 / 52

The Linux listen() System Call

int listen(int sockfd, int backlog);

listen() marks the socket referred to by sockfd as a passive socket,
that is, as a socket that will be used to accept incoming connection
requests using accept(2).

The sockfd argument is a file descriptor that refers to a socket of type
SOCK_STREAM or SOCK_SEQPACKET.

The backlog argument defines the maximum length to which the queue
of pending connections for sockfd may grow. If a connection request
arrives when the queue is full, the client may receive an error with an
indication of ECONNREFUSED or, if the underlying protocol supports
retransmission, the request may be ignored so that a later reattempt at
connection succeeds.

The backlog parameter controls the size of the queue

Denial of Service Attacks 32 / 52

Reflector Attacks

Find a UDP service where the response size is larger than the query—DNS
is often a good choice, with (sometimes) a 10× ratio
Send a query to that service, forging your source address to point to the
victim
The response—10× larger—will go to the victim
Send these packets to lots of DNS servers—the victim will be hit with 10×
more traffic than you sent

Denial of Service Attacks 33 / 52

But What Do We Do?

Denial of Service Attacks 34 / 52

Solutions

DoS attacks are a hard problem—by definition, they’re exhausting some
resource
Maybe you can increase your resources—but it’s probably cheaper for the
attacker to increase their nastiness
But there are approaches

Denial of Service Attacks 35 / 52

Distributed Services

The essence of a DDoS attack is flooding one particular link
Suppose you can spread out your site across many links and servers
Either the attack hits one node and spares the others, if a single IP address
is targeted, or the attack is diffused among many sites
But how?

Denial of Service Attacks 36 / 52

Content Distribution Networks

Most large web sites use Content Distribution Networks (CDNs) to handle
the load
A CDN has mirror copies of the site on its worldwide nodes
Big CDNs, like CloudFlare, have many nodes all over the world

Denial of Service Attacks 37 / 52

The Really Big Sites

Companies like Google and Amazon Web Services have huge pipes
Google recently withstood a 2.5 Tbps—that is, 2.5 · 1012

bits/second—DDoS attack
Their services weren’t affected at all. . .
(They think it was a state-sponsored attack)
Google’s Project Shield puts journalists’ sites on the Google cloud, to
protect them from censorship-by-DDoS
(But what if the DDoS attack is against network infrastructure, e.g., DNS
servers?)

Denial of Service Attacks 38 / 52

Filtering

Sometimes, there are identifiable characteristics to the attack traffic
Example: most legitimate traffic to a site is return visitors—during attacks,
filter out unknown sources
ISPs can filter such traffic before it reaches vulnerable links
Or: filter out a single target IP address very early, at the edge of the
network, to spare other addresses reached by that link
The big ISPs know how to do this and have specialized filtering servers
ready to go

Denial of Service Attacks 39 / 52

Counterattack!

Botnets are controlled by their C2 networks
If you take out the command nodes, the bots go idle
This has been done. . .

Denial of Service Attacks 40 / 52

Microsoft and Trickbot

In October 2020, Microsoft got a court order allowing it to seize some IP
addresses
This let them take out most of the C2 nodes in Trickbot, a million-node
botnet
(These bots were used for many sorts of evil, including launching
ransomware attacks)
At about the same time, Cyber Command—the US military’s cyberwarfare
unit—launched its own attack against Trickbot’s C2 nodes
These attacks didn’t destroy Trickbot, but it did knock it off the air for a
while
There have been hints that Trickbot was going to be used to disrupt the
2020 presidential election. . .

Denial of Service Attacks 41 / 52

Restoring C2 Networks

The attackers have been building more resiliency into their tools
They have backup communications channels and other ways to restore
control
Of course, the defenders try to block these, too

Denial of Service Attacks 42 / 52

Cookies

To defend against, e.g., SYN floods, the server can send a SYN+ACK packet
with its sequence number created as a function of some client data
(Invented by Dan Bernstein)
It does not create state for the half-open connection—but when it receives
the ACK (the third message in the three-way handshake), it can recognize
and verify the ACK number as one it would have sent
It then creates the state, after it knows that this isn’t part of a SYN flood
Some newer protocols have stronger versions of this built in

Denial of Service Attacks 43 / 52

https://cr.yp.to/syncookies.html

Client Puzzles Against CPU Exhaustion

Some operatons, e.g., public key cryptography, take a lot of CPU time
Attack: open lots of HTTPS connections, but don’t do any expensive
operations; just send fake data
The server will detect this, but only after it’s done its computations
Solution: the server sends a hard-to-compute, cheap to verify “puzzle” to
the client; it does not do anything expensive until it hears back
Adjust the puzzle difficulty depending on CPU load; make the puzzle more
expensive than the public key operations

Denial of Service Attacks 44 / 52

A Sample Puzzle

Pick a large, random number x
Calculate H(x), where H is a cryptographic hash function such as SHA512
Set the low-order n bits of x to 0, where n is the difficulty parameter; call
this x′

Send the client 〈x′,H(x), n〉
The client must find x, but this cannot be done any more quickly than
O(2n) time by exhaustive search
Verification is cheap: one invocation of H on the returned value
(There are better puzzles that are not as easily solved by using a
massively parallel system, i.e., a botnet)

Denial of Service Attacks 45 / 52

Designing for Defense

Suppose you’re designing a system—what do you do about DoS attacks?
Protocols
Parallelism
Agility
Planning
(Cisco’s advice is pretty good)

Denial of Service Attacks 46 / 52

https://tools.cisco.com/security/center/resources/guide_ddos_defense

Protocols

Make the client commit first—don’t do expensive things until you’re sure
the client is real
Stay stateless—package up all client state, encrypt+MAC it, and send it to
the client. The client will return it with its next request, but you don’t have
to store anything
If appropriate, use client-side puzzles

Denial of Service Attacks 47 / 52

Parallelism

Design your service to be split across multiple machines
(You want to do that anyway—if you’re successful, you’ll need that to
grow, and who wants to plan on being unsuccessful?)
Don’t assume low latencies between the different instances—assume that
they may be all over the world

Denial of Service Attacks 48 / 52

Cloud Providers

If your service is cloud-based and distributed around the world, it’s harder
to attack
The big cloud providers also have application tools to simplify splitting
things up

Denial of Service Attacks 49 / 52

Agility

Monitor for attacks
Be ready to move quickly if there’s an attack
Spin up more servers, move them around, work with a cloud provider
Change IP addresses (and DNS records)

Denial of Service Attacks 50 / 52

Planning

Once the attack starts, you won’t have time to fix your system architecture
Plan ahead

Know whom to call at your ISP and/or cloud provider

Have those phone numbers written down—you may not be able to use email
or text messages

Figure out backup communications channels
Rehearse your response—make sure you have all of the pieces in place
DoS attacks are difficult to counter—but it is possible to do better than
simply giving up

Denial of Service Attacks 51 / 52

Questions?

(Tufted titmouse, Riverside Park, March 2, 2019)

	The Problem
	But What Do We Do?

