
Using Cryptography

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Cryptography in Practice

We’ve covered a lot of cryptography principles—but how do we actually
use it?
Beyond the basics—don’t invent your own algorithms or protocols—what
are the issues in practice?
Lots of them. . .

Using Cryptography 2 / 48

Random Numbers

Random numbers are vital for cryptography
They’re used for keys, nonces, primality testing, and more
Where do they come from?

Using Cryptography 3 / 48

What is a Random Number?

Must be unpredictable

Must be drawn from a large-enough space
Ordinary statistical-grade random numbers are not sufficient
Distribution not an indication of randomness: loaded dice are still random!

Using Cryptography 4 / 48

Generating Random Numbers

Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.

—John von Neumann, 1951

Using Cryptography 5 / 48

Sources of Random Numbers

Dedicated hardware random number sources
Random numbers lying around the system
Software pseudo-random generator
Combinations

Using Cryptography 6 / 48

Hardware Random Number Generators

Radioactive decay
Thermal noise
Oscillator pairs
Other chaotic processes

Using Cryptography 7 / 48

Radioactive Decay

Timing of radioactive decay unpredictable even in theory—it’s a quantum
process
Problem: low bit rate from rational quantities of radioactive material
Problem: not many computers have Geiger counters or radioactive
isotopes attached. . .
See http://www.fourmilab.ch/hotbits/hardware3.html for a
description of how to do it. . .

Using Cryptography 8 / 48

http://www.fourmilab.ch/hotbits/hardware3.html

Thermal Noise

Any electronic device has a certain amount of random noise (thermal
noise in the components)
Example: Take a sound card with no microphone and turn up the gain to
maximum
Or use a digital camera with the lens cap on
Problem: modest bit rate

Using Cryptography 9 / 48

Oscillator Pairs

Have a free-running fast R-C oscillator (don’t use a crystal; you don’t want
it accurate or stable!)
Have a second, much slower oscillator
At each zero-crossing of the slow oscillator, sample the value of the fast
oscillator
Caution: watch for correlations or couplings between the two

Using Cryptography 10 / 48

Other Chaotic Processes

Mouse movements
Keystroke timing (low-order bits)
Network packet timing (low-order bits)
Disk seek timing: air turbulence affects disk internals (but what about solid
state disks?)

R At boot time, there’s not much of this available
Also: what if the enemy can observe the process?
Cameras and Lava Lites®! (http://www.lavarnd.org/)

Using Cryptography 11 / 48

http://www.lavarnd.org/

Problems

Need deep understanding of underlying physical process
Stuck bits
Variable bit rate
How do we measure their randomness?
Assurance—how do we know it’s working properly?

Using Cryptography 12 / 48

Software Generators

Again, ordinary generators, such as C’s random() function or Java’s
Random class are insufficient
Can use cryptographic primitives—encryption algorithms or hash
functions—instead
But—where does the seed come from?

Using Cryptography 13 / 48

Generating Strong Pseudo-Random Numbers?

unsigned int
nextrand()
{

static unsigned int state;
static int first = 1;

if (first) {first = 0; state = truerand();}
state = f(state);
return sha256(state);

}

State is initialized from a true-random source
Can’t invert sha256() to find state from return value
But there is a serious problem here. What is it?

Using Cryptography 14 / 48

State Space

sha256() isn’t invertible, but we can do a brute force attack
state is too short; we can try all possible values in 232 iterations
Estimated resources on a 3.4 Ghz Pentium: 3.6 hours CPU time; 150 GB to
store all of the values
The attack parallelizes nicely
Need enough state—and hence enough true-random bits—that brute force
is infeasible.

Using Cryptography 15 / 48

Private State

An application can keep a file with a few hundred bytes of random
numbers
Generate some true-random bytes, mix with the file, and extract what you
need
Write the file back to disk—read-protected, of course—for next time
What about stored VMs? Will they get the same seed each time?
Also: “mixing” isn’t as easy as it sounds

Using Cryptography 16 / 48

OS Facilities

Many operating systems can provide cryptographic-grade random
numbers
/dev/random: True random numbers, from hardware sources (but don’t
use it!)
/dev/urandom: Software random number generator, seeded from
hardware
Windows: CryptGenRandom()—similar to /dev/urandom

And there are APIs—in Python 3, use the secrets class instead of random

Using Cryptography 17 / 48

A Well-Known Failure

As noted, not much randomness is available at boot time
But—that’s often when key pairs are generated
An RSA public key is the product of two “random” primes
Might one be predictable?
Heninger, Durumeric, Wustrow, and Halderman showed that many ssh
keys have at least one predictable prime factor, for just this reason
The same thing happened with several countries’ national ID cards

Using Cryptography 18 / 48

DUAL_EC_DRBG: The NSA Back Door

NIST decided to standardize a software PRNG

R This is a good thing
NIST picked several designs—and the NSA persuaded NIST to include
another based on elliptic curve cryptography
It seemed odd—DUAL_EC is quite slow, since it’s based on public key
technology—but the NSA insisted that they needed it. They did need it,
but not for the usual reason. . .
At least one company, RSA, made it the default in their product, allegedly
after being paid off
Juniper used it in their routers—unclear why

Using Cryptography 19 / 48

The Problem with DUAL_EC_DRBG

The algorithm includes a “random” constant
If it’s not random—if it’s the public key in an elliptic curve
cryptosystem—anyone who can see enough of the output from the PRNG
and knows the corresponding private key can predict all future output from
the algorithm
Many protocols do in fact transmit some random bits in the clear
There have been public demonstrations that it’s exploitable under certain
circumstances
Does the NSA know the corresponding private key? They’ve never said. . .
Someone—supposedly not Juniper—changed the magic constant in
Juniper’s version. Do they know the new private key?
NIST has removed DUAL_EC_DRBG from their standard, RSA has removed
it from their code. . .

Using Cryptography 20 / 48

Hardware Versus Software
Random Number Generators

Hardware values can be true-random
Output rate is rather slow
Subject to environmental malfunctions, such as 60 Hz noise
Software, if properly designed and written, is fast and reliable
Combination of software generator with hardware seed is usually best

Using Cryptography 21 / 48

Summary

To paraphrase Knuth, random numbers should not be generated by a
random process
In many systems, hardware and software, random number generation is a
very weak link
Use standard facilities when available; if not, pay attention to RFC 4086

Using Cryptography 22 / 48

Encryption: Data in Motion, Data at Rest

Data in motion: protect a communications session
Data at rest: protect a file or device
The properties are very different

Using Cryptography 23 / 48

Protecting Communications: Data in Motion

Both parties are present for the cryptographic protocol
Certain items can be negotiated, such as which algorithms are supported
Confidentiality must be future-proof; authenticity generally need not
be—authenticity only matters during the life of the session

Using Cryptography 24 / 48

Protecting Files: Data at Rest

Encryption and decryption are asynchronous; you don’t know when the
decryption will take place
In the future, no idea which algorithms will be supported (old, insecure
algorithms are often deleted from programs)
Authenticity may be an issue, if you have to verify in the future that the
file is genuine

Using Cryptography 25 / 48

Protecting Files — Issues

Suppose we want to use crypto to protect files. Now what?
What to encrypt?
Where should keys be stored?
What is the tradeoff between availability and confidentiality?

Using Cryptography 26 / 48

Why Encrypt Files?

Theft of files
Theft of backup media
Theft of computer

Using Cryptography 27 / 48

Bad Reasons and Good

Is there a flaw in the operating system’s protection mechanisms? Why
can’t the OS keep bad guys from the file?
Do you trust your sysadmin?
Are you using a cloud VM? What about the cloud sysadmin?
Laptops have feet — a remarkably high percentage are stolen

Using Cryptography 28 / 48

Laptop Theft

September 17, 2000
IRVINE – Qualcomm founder Irwin Jacobs’ laptop computer disappeared during
a conference yesterday in an apparent theft that could put some of the
company’s most sensitive secrets at risk.
. . .
Jacobs said his laptop contained "everything," secret corporate information,
including e-mail dating back years, financial statements and even personal
mementos.
. . .
Though Jacobs’ IBM ThinkPad PC is valued at about $3,700, the value of the
information it contained is incalculable to Qualcomm and to Jacobs.

Using Cryptography 29 / 48

Caveats

File encryption can help
But there may be a serious convenience issue
It may result in a loss of availability, if you lose the key

Using Cryptography 30 / 48

Encryption Options

Manually encrypt/decrypt files
Encrypt an entire disk or partition

Using Cryptography 31 / 48

Manual Encryption

Very inconvenient to use
Users are constantly supplying keys
Most utilities won’t have direct interfaces to the decryption function; you
have to manually decrypt files before use
Users will forget to re-encrypt files
Important design principle: make it easy for users to do the right thing

Using Cryptography 32 / 48

Disk Encryption

Encrypt an entire disk or disk partition
Protects everything, even the free space

R Very important, given that “delete” operations do not delete the data
Useful for protecting swap area
Built into Windows (BitLocker) and MacOS (FileVault)
Pretty much ubiquitous on modern phones

Using Cryptography 33 / 48

Decrypting the Disk

Encrypt it? Where does the decryption key come from?
One answer: supplied at reboot time
In a USB drive plugged into a server?
Tradeoff: availability versus confidentiality and integrity
Use secure crypto hardware to decrypt database?
Who has what sort of access, and what are their powers?

Using Cryptography 34 / 48

How Does a User Store a Key?

Store key on disk, encrypted
Generally decrypted with passphrase
Passphrases are weak, but they’re a second layer, on top of OS file access
controls
Special-purpose hardware
Or—convert a passphrase directly to a key

Using Cryptography 35 / 48

Secure Cryptographic Hardware

HSM—Hardware Security Module
Can be used for users or servers
More than just key storage; perform actual cryptographic operations
Enemy has no access to secret or private keys
Friends have no access, either
Modular exponentiation can be done much faster with dedicated hardware

Using Cryptography 36 / 48

Hardware Key Storage on Modern Platforms

Many PCs have TPM—Trusted Platform Module—chips
Newer Macs have Apple’s T2 chip
iPhones use a “secure enclave” in the CPU

Using Cryptography 37 / 48

iOS Encryption

At first boot, the phone generates an internal AES-256 key
This key remains within the secure enclave and can’t be exported
The use’s PIN is converted to an AES-256 key using PBKDF2 (stay tuned);
this PIN-derived key is mixed with the internal key inside the secure
enclave to produce a master key
By default, there are limited retries on PIN entry
All storage is encrypted, sometimes with the internal key, sometimes with
the master key, and sometimes with a new key derived from the master
key
All that happens inside the secure enclave—and without the PIN and
master key, you can’t decrypt anything. . .

. . . supposedly—in reality, there have been bugs

Using Cryptography 38 / 48

iOS Encryption

At first boot, the phone generates an internal AES-256 key
This key remains within the secure enclave and can’t be exported
The use’s PIN is converted to an AES-256 key using PBKDF2 (stay tuned);
this PIN-derived key is mixed with the internal key inside the secure
enclave to produce a master key
By default, there are limited retries on PIN entry
All storage is encrypted, sometimes with the internal key, sometimes with
the master key, and sometimes with a new key derived from the master
key
All that happens inside the secure enclave—and without the PIN and
master key, you can’t decrypt anything. . .
. . . supposedly—in reality, there have been bugs

Using Cryptography 38 / 48

Hardware Issues

Hardware must resist physical attack
Environmental sensors: detect attack and erase keys
Example: surround with wire mesh of known resistance; break or short
circuit is detected
Example: temperature sensor, to detect attempt to freeze battery

Using Cryptography 39 / 48

Limitations of Cryptographic Hardware

Tamper-resistant, not tamper-proof
Again: who is your enemy, and what are your enemy’s powers?
How does Alice talk to it securely? How do you ensure that an enemy
doesn’t talk to it instead?
What is Alice’s intent? How does the crypto box know?
What if there are bugs in the cryptographic processor software? (IBM’s
4758 has a 486 inside. That can run complex programs. . .)
Research shows that most HSMs are, in fact, insecure

Using Cryptography 40 / 48

Timing Attacks

Different machine-level operations can take different amounts of time
Fetching data from the cache is much faster than fetching it from RAM
This can be used by attackers to learn a key!
Example: suppose the attacker is on the same physical machine as you in
a cloud datacenter
Sometimes, such attacks can even be done remotely

Using Cryptography 41 / 48

Passphrases as Keys

Passphrases are lousy keys—people pick bad ones, reuse them, they don’t
have enough entropy, and more
Sometimes, though, they’re all we have
Goals: make the key look pseudo-random and impede guessing attempts
Techniques: hash functions, iteration (at least 10,000 times), salt—the salt
is a 128-bit or longer random number
More on these techniques next class

Using Cryptography 42 / 48

PBKDF2: Password-Based Key Derivation Function 2

If we need ℓ bits of keying material and our hash function emits h-bit values,
we need n = dℓ/he invocations of F. If P is the password, s is the salt, and c is
the iteration count:

k = F(P, s,c,1) ‖ F(P, s,c,2) ‖ . . . ‖ F(P, s,c,n)
F(P, s,c, i) = U1 ⊕ U2 ⊕ . . . ⊕ Uc

where:

U1 = H(P, s ‖ int32(i))
U2 = H(P,U1)

. . .

Uc = H(P,Uc−1)

That is: run a hash function over P, s and the block counter i iterated c times,
exclusive-ORing the outputs together, for each portion of k.

Using Cryptography 43 / 48

Why This?

The salt means that two uses of the same password will produce different
keys
But—the salt must be available to the decryptor. (For file or disk
encryption, that means storing the salt with the encrypted file.)
Using many iterations slow down guessing

Using Cryptography 44 / 48

Using the Generated Key

Pick a random key to encrypt the data (DEK—Data-Encrypting Key)
In fact, generate multiple DEKs, one for each section of the disk
Use the user-supplied key to encrypt the DEK

R This makes changing the password fast
(Effectively) erasing the disk is also very quick—just overwrite the DEK

Using Cryptography 45 / 48

Key Expansion

Suppose you need multiple keys derived from one original key, either from
a password or from a Diffie-Hellman exchange
We use key expansion

For each key you need, pick a label L, perhaps “C” for a confidentiality key,
“I” for an integrity key, etc.
Then KL = H(K,L), where K is the original key and H is a cryptographic hash
function

Using Cryptography 46 / 48

Protecting In-Memory Keys

If a key is in RAM, it can be stolen from there
If it’s swapped out to disk, it can persist on the disk—use the mlock()
system call to lock it into RAM
When a key (or the password it is derived from) is no longer needed, zero
the memory—but that’s trickier than it looks
char k[32];

get_key(k);
decrypt_file(k, filename);
memset(k, (char) 0, sizeof k);
return;

What’s wrong?
A good optimizing compiler will realize that k is not used after zeroing, and
will optimize away the call. . .

Using Cryptography 47 / 48

Protecting In-Memory Keys

If a key is in RAM, it can be stolen from there
If it’s swapped out to disk, it can persist on the disk—use the mlock()
system call to lock it into RAM
When a key (or the password it is derived from) is no longer needed, zero
the memory—but that’s trickier than it looks
char k[32];

get_key(k);
decrypt_file(k, filename);
memset(k, (char) 0, sizeof k);
return;

What’s wrong?

A good optimizing compiler will realize that k is not used after zeroing, and
will optimize away the call. . .

Using Cryptography 47 / 48

Protecting In-Memory Keys

If a key is in RAM, it can be stolen from there
If it’s swapped out to disk, it can persist on the disk—use the mlock()
system call to lock it into RAM
When a key (or the password it is derived from) is no longer needed, zero
the memory—but that’s trickier than it looks
char k[32];

get_key(k);
decrypt_file(k, filename);
memset(k, (char) 0, sizeof k);
return;

What’s wrong?
A good optimizing compiler will realize that k is not used after zeroing, and
will optimize away the call. . .

Using Cryptography 47 / 48

Questions?

(American kestrel, Morningside Park, September 22, 2020)

	Randomness
	Encrypting Files
	Hardware Issues
	Passphrases as Keys

