
Introduction to Cryptography
Cryptographic Protocols

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


What are Cryptographic Protocols?

To use cryptographic primitives properly, we need to embed them in a
protocol: a stylized set of messages
We’ve already seen one example: the hash-based coin-flipping protocol
All real uses of cryptography involve a protocol
Not surprisingly, protocol design is subject to subtle errors

Introduction to Cryptography 2 / 21



A Warning

This warning is from the first published paper on cryptographic protocols, in
1978:

Finally, protocols such as those developed here are prone to extremely
subtle errors that are unlikely to be detected in normal operation. The
need for techniques to verify the correctness of such protocols is great,
and we encourage those interested in such problems to consider this
area.

The warning was prescient.

Introduction to Cryptography 3 / 21



Basic Concepts

Assumptions What do you assume is secure? What are the enemy’s powers?
Environment Can you assume accurate clocks? Secure local storage?

Memorized keys? Local computing capability? Limits on
transmissions or latency?

Nonce A random value generated by one party and used only once
Trusted Party An entity who will carry out its functions honestly
Honest but Curious An entity who will carry out its functions honestly, but who

will observe and perhaps use anything unencrypted
Often, changing assumptions or environment will require a very different
protocol. It’s also how academic cryptography generates so many papers—just
change the assumptions or environment. . .

Introduction to Cryptography 4 / 21



A Toy Protocol

Transmitting too much with a single key is a bad idea. Alice and Bob therefore
want to use a separate key for each communication. Here’s a toy protocol.

Alice Bob
E(KL,KS)

. . .
E(KS,mi)

. . .

1 Alice and Bob share a long-term key KL

2 Alice generates a random session key KS

3 She then encrypts KS using KL and sends it to Bob:
A→ B : E(KL,KS)

4 Bob decrypts the message and now knows KS

5 Alice and Bob have a conversation protected by KS

A→ B : E(KS,m0)
. . .
B→ A : E(KS,mi)
. . .

Introduction to Cryptography 5 / 21



What’s Wrong?

The protocol doesn’t scale—what if Alice, Bob, Carol, Dave, etc., all need
to talk to each other? You’d need O(n2) keys
If they all shared the same secret KL, no one would have any cryptographic
assurance of the identity of the other party
No one knows if the key KS (and hence the subsequent session) is
fresh—maybe some attacker is replaying old traffic

Introduction to Cryptography 6 / 21



The Needham-Schroeder Protocol

The oldest cryptographic protocol in the open literature
Assumption: there is a universally trusted server S; Alice, Bob, etc., share
a key KAS, KBS, etc., with S

(S is sometimes called a Key Distribution Center (KDC))
Everyone wants cryptographic assurance of the other party’s identity
All keys must be fresh

Introduction to Cryptography 7 / 21



The Needham-Schroeder Protocol

1 A→ S : A ‖ B ‖ NA

2 S→ A : E(KAS,NA ‖ B ‖ KAB ‖ E(KBS,KAB ‖ A))
3 A→ B : E(KBS,KAB ‖ A)
4 B→ A : E(KAB,NB)

5 A→ B : E(KAB,NB − 1)

Introduction to Cryptography 8 / 21



The Needham-Schroeder Protocol Pictorial

S

A B

(3) KAB ‖ A

(1) A ‖ B ‖ NA (2) NA ‖ B ‖ KAB ‖ KAB ‖ A

(4) NB

(5) NB − 1

A− S
Keys: B− S

A− B

Boxes show encryption; colors show keys

Introduction to Cryptography 9 / 21



The Needham-Schroeder Protocol: Explanation

1 Alice tells the server she wants to talk to Bob. She includes a nonce—a
newly generated random number—to provide assurance that the server’s
response is fresh

2 The server sends Alice a complex message
Alice knows it’s from the server, because it’s encrypted with a key only she
and S know.
The nonce assures freshness.
(Why is Bob’s name there?)
The session key to talk to Bob is KAB.
There is also a package encrypted to Bob that Alice can’t read

3 Alice forwards that package to Bob
4 Bob decrypts it. He knows it’s from S, because it’s encrypted with KBS; it

provides the session key KAB and Alice’s identity
5 To ensure that KAB is fresh, Bob sends Alice a nonce NB

6 Alice subtracts 1 from it, to show that she could read it
Introduction to Cryptography 10 / 21



Is it Correct?

In 1981, Denning and Sacco pointed out that if an attacker ever recovers a
single KAB, they can forever talk to Bob and impersonate Alice by replaying
messages 3–5.
They suggest using timestamps to guarantee freshness
They then revise Needham and Schroeder’s public key variant with one
using timestamps and certificates

1 A→ S : A,B
2 S→ A : CA,CB
3 A→ B : CA,CB,E(PB,D(SA,KAB ‖ T))

where CA and CB are certificates for A and B, PB is Bob’s public key, SA is
Alice’s secret key, and T is the current time
Is this correct?

Introduction to Cryptography 11 / 21



(What’s a Certificate?)

A certificate is a digitally signed statement linking an identity to a public
key
Thus, CA = D(SS,A ‖ PA ‖ T) is S attesting that as of time T, PA is Alice’s
public key.
Anyone who wants to believe this statement must trust S and have a copy
of S’s public key
More on certificates next class

Introduction to Cryptography 12 / 21



Nope!

In 1994, Abadi and Needham found a flaw in the Denning-Sacco protocol
Bob can copy Alice’s digitally signed statement about the session key KAB

A→ B : CA,CB,E(PB,D(SA,KAB ‖ T))

into a new message to Carol:
B→ C : CA,CC,E(PC,D(SA,KAB ‖ T))

The presence of CA means that the messages claims to be from A, and the
session key is signed by A, so it appears to be genuine
As long as this happens around time T, it will be accepted
And—in 1996, Lowe used automated tools to find a new, previously
unnoticed flaw in the original Needham-Schroeder protocol
Cryptographic protocols are hard. . .

Introduction to Cryptography 13 / 21



Cryptoagility and APIs

All real-world systems feature cryptoagility: the ability to support multiple
algorithms
In interactive situations, the algorithms to use are negotiated by the
parties
For things like encrypted files, there’s always a header field that says what
algorithm was used to encrypt the file
Why? Because algorithms age and become less secure, or because better
ones are developed
Example: in 1995, systems used 1024-bit RSA, MD5, SHA-1, RC4, and DES.
RSA is still secure with larger moduli—but we now have elliptic curve,
SHA-2, and AES, and we’ll soon have post-quantum algorithms

Introduction to Cryptography 14 / 21



How Do We Handle This?

DO NOT WRITE YOUR OWN NEGOTIATIONS
Negotiating crypto algorithms is part of cryptographic protocols—and like
every other part, it’s hard to get right
In 2006, a friend and I showed that every IETF protocol did hash function
negotiation incorrectly—and these were Internet standards
(https://www.cs.columbia.edu/~smb/papers/new-hash.pdf)
Let’s instead worry about the code

Introduction to Cryptography 15 / 21

https://www.cs.columbia.edu/~smb/papers/new-hash.pdf


General Negotiation Style

One side proposes a set of algorithms; the other side selects and
announces its choices
(Implementations only announce options they’ve implemented, of course,
but the choices negotiated may depend on cost, perceived security, or
even legal restrictions)
Different types of algorithms—hash functions, public key and symmetric
ciphers, digital signatures, integrity checks—can be negotiated
independently; alternatively, some systems negotiate suites of algorithms
Regardless: at the end of the process, the program knows which algorithm
to use for which purpose

Introduction to Cryptography 16 / 21



Hash Functions

Hash functions are straightforward: they all have the same functionality
They do differ in output blocksize; that’s easily paramaterized

Introduction to Cryptography 17 / 21



Public Key Encryption

Public key algorithms all use key pairs; however, keys may be composed
of several elements
Example: RSA public keys are the pair 〈e,n〉; depending on implementation
choices, the private key may be the pair 〈d,n〉 or the triple 〈d,p,q〉
Post-quantum algorithms may require more complex keys

Introduction to Cryptography 18 / 21



Digital Signatures

Some algorithms, e.g., RSA, provide “message recovery”—when you do
the public operation, you get back the original message
Example: if Alice sends {m,D(SA,H(m))}, Bob would calculate H(m) and
E(PA,D(SA,H(m))) and see if the two matched
For other algorithms, H(m) is not the result of signature verification; you
have to do a more complex calculation

Introduction to Cryptography 19 / 21



Integrity Checks and Ciphers

Integrity checks can be done as a separate operation, e.g., HMAC, or they
can be part of encryption with the proper mode of operation
Make sure your design is flexible enough to handle either
In the past, this was a problem for negotiation—the concept of a combined
mode did not exist

Introduction to Cryptography 20 / 21



Questions?

(Red-bellied woodpecker, Morningside Park, December 1, 2019)


	Cryptographic Protocols
	The Needham-Schroeder Protocols
	Cryptographic APIs

