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Who Has the Key?

For two parties—in cryptography, they’re traditionally called Alice and
Bob—to communicate securely, they both need to know the same key
How do they get it?
How do they handle it?
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Codebooks

Bob to Alice: here’s a codebook; go spy and send me lots of messages
Alice loses her codebook; she can’t communicate securely
Alice is caught and her codeebook is seized: she can’t communicate
securely, and the other side can read all her old messages
Alice hangs onto her codebook and isn’t caught, but sends so many
messages that the other side breaks the code
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Ciphers

Bob to Alice: here’s a cipher key; go spy and send me lots of messages
Alice loses her key; she can’t communicate securely
Alice is caught and her key is seized: she can’t communicate securely, and
the other side can read all her old messages
Alice hangs onto her key and isn’t caught, but sends so many messages
that the other side breaks the cipher
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One-Time Pad

Bob to Alice: here’s a one-time pad; go spy and send me lots of messages
Alice loses her one-time pad; she can’t communicate securely
Alice is caught and her one-time pad is seized: she can’t communicate
securely, and the other side can read all her old messages
Alice hangs onto her one-time pad and isn’t caught, but sends so many
messages that she uses up the one-time pad and can’t communicate
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This was a Real Problem!

Codebooks were captured, e.g., the SMS Magdeburg, 1914
Cipher keys were captured, e.g., the U-110, 1941
Cipher keys were compromised after agent capture, e.g., Englandspiel,
1941–43
Soviet spies—and their one-time pads—were captured
Etc.
The problem seemed unsolvable—until it was solved in the 1970s
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The Inventors and Their Impact

1970–1974 James Ellis, Clifford Cocks, Malcom Williamson
1975 Ralph Merkle

1976 Whit Diffie and Martin Hellman
1978 Ron Rivest, Adi Shamir, Len Adleman

Let’s start with Diffie and Hellman
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A Remarkable Paper

Diffie, then a grad student, (somehow!) understood the key distribution
problem
He conceived of a radically different idea: a public encryption key that is
separate but derived from a private decryption key
He conceived of digital signatures: a way to use a private key to sign a
document in a way verifiable by anyone who knows the public key
He and his advisor, Hellman, wrote a paper that changed the world
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Requirements

Two functions, Ek and Dk, such that Ek is the inverse of Dk and vice-versa
From a seed key k, it must be easy to compute Ek and Dk

It is infeasible to derive Dk from Ek
The encryption and decryption keys are different, so this is sometimes
called asymmetric cryptography
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Use

Bob publishes his public key EkB
To send him a message m, Alice computes EkB(m)

Bob decrypts that using his private key DkB

Alice can publish her own public key, EkA; Bob can use that to send her
replies
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Digital Signatures

Dk is the inverse of Ek—but what about the reverse?
If those functions commute, Ek is the inverse of Dk

To sign a message, decrypt it with your private key
Anyone can verify the signature using your public key
What Alice really sends Bob is DkA(EkB(m))

Bob thus receives an authenticated, secure message
Only one problem: Diffie and Hellman couldn’t find suitable functions E
and D. . .
But their partial solution is itself useful
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Diffie-Hellman Key Exchange

Both parties agree on a prime p and a base g, where g is a generator of
the group Z∗

p
, the positive integers modulo p under multiplication

(If p = 2q+ 1, where q is prime, half of the elements of Z∗
p

are generators)

Alice picks a random number rA and sends Bob grA mod p. Similarly, Bob
picks a random number rB and sends grB mod p.
Alice now knows rA and grB mod p; Bob knows rB and grA mod p

Alice calculates (grB)rA = grArB mod p; Bob calculates (grA)rB = grArB mod p

grArB mod p is now a shared secret
This is called a public key distribution system
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Security of Diffie-Hellman Key Exchange

Given x and xy, finding y is easy: it’s logx

But xy mod p requires solving the discrete logarithm problem, and that’s
believed to be very hard
We don’t know if there’s any other way to crack this—but it doesn’t seem
likely
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Authenticating Diffie-Hellman Key Exchange

Alice and Bob have another problem: how do they know that the received
exponentials are genuine?
Maybe Bob has really received grE mod p, which belongs to Eve, the
eavesdropper
(Is that a real threat? Yes!)
Either we need some way to authenticate it—Alice and Bob could publish
their long-term exponentials as their public keys—or we just accept that
this is an unauthenticated key exhange
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Network Threat Models

Standard assumption: the enemy controls the network
Mental model: you hand your packets to the enemy to be delivered
More formally: network messages can be created, deleted, modified,
replicated, duplicated, etc.
Note the resemblance to the CIA model
(How do we authenticate published keys? An interesting question; stay
tuned. . . )
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Rivest, Shamir, and Adleman

Rivest, Shamir, and Adleman were MIT professors who saw the Diffie and
Hellman paper
They tried and discarded many schemes, before finally finding one that
worked
Their solution is still in use today
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The RSA Algorithm

Pick two large primes, p and q (today, about 1024 bits long); let n = pq

Pick a public encryption key e, typically 65537 (216 + 1)
Calculate ed ≡ 1 mod (p− 1)(q− 1)
Encryption: c ≡me mod n

Decryption: m ≡ (me)d mod n ≡med mod n ≡m

The public key is 〈e,n〉; the private key is 〈d,n〉 or 〈d,p,q〉
The equations are symmetric; we can thus achieve digital signatures as
well
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Implementation and Security

Probabilistic primality testing of large numbers is easy and efficient; we
can thus generate p and q easily enough
However, factoring a large number n into p and q is believed to be
extremely hard
There is no known way to calculate d without knowledge of p and q; n and
e alone will not suffice
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Is RSA Secure?

There is no known way to calculate d without knowing p and q, i.e.,
factoring n

Factoring has been studed for hundreds of years and is believed to be very
hard
In other words: we do not know if RSA is equivalent to factoring, nor do we
know that factoring is intrinsically hard—but both are believed to be the
case
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A Toy Example

Let p = 13,q = 29
Thus, n = 377 and (p− 1)(q− 1) = 336
Let d = 131; thus, e = 59
ed = 7729 ≡ 1 mod 336

Let m = 42
4259 ≡ 22 mod 377
22131 ≡ 42 mod 377

$ bc -q
scale=0
p = 13; q = 29; n=p*q
n
377
d = 131; e = 59
(e*d) % ((p-1)*(q-1))
1
m=42
(m^e)%n
22
(22^d)%n
42
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The Real Inventors. . .

Diffie and Hellman were brilliant, but they were amateurs—the pros got
there first
At GCHQ, James Ellis was asked to look into the key distribution
problem—and in 1970, he published an internal memo saying that
“non-secret encryption” was at least conceputally possible
However, he wasn’t a mathematician and did not propose a solution
A few years later, Clifford Cocks invented the algorithm now known as RSA
Malcom Williamson invented what is now known as Diffie-Hellman key
exchange
And we never heard about this—because it was classified until 1997!
But—it’s interesting that the academic sector was only a very few years
behind the professionals
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Ralph Merkle’s Puzzles

In 1975, Merkle suggested that Alice create N “puzzles”—encrypted
messages that could be solved, but only in O(N) time
These messages all contain a random key
She sends all N to Bob
Bob picks one puzzle at random, spends O(N) time solving it, and recovers
the key to start using
An eavesdropper will have to spend O(N2) time
This is also a public key distribution function
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What Happened?

Technically, it isn’t clear that N2 is costly enough
N could be very large, but then there are bandwidth issues and creation
time for Alice
More seriously: Merkle had a much harder time getting traction for his idea
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Digital Signatures?

A former director of the NSA claimed that the US invented public key
cryptography a decade before Diffie and Hellman—which would also be
before GCHQ
I have heard a claim that the motivation was technical mechanisms for
control of nuclear weapons
It may be true—but objective evidence is lacking
My research suggests that what they would have needed is digital
signatures—which GCHQ did not invent
Verdict: possible but unproven
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Elliptic Curves

RSA is secure, but it’s slow and its keys are large
We want something faster, especially for low-end devices
(Besides, mathematicians are making some progress on factoring)
The answer: elliptic curves
With elliptic curves, we can do signatures and Diffie-Hellman exchanges
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What is an Elliptic Curve?

A curve in two variables where one is of degree 2 and the other is of degree 3.
Example: y2 = x3 − x+ 1
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Using Elliptic Curves for Cryptography

We use only integer points
Elements of the field are (x,y) points; composing two points involves
finding where a line between them next intersects the curve and
projecting up or down
Arithmetic is modulo some large number—but much smaller than for RSA
For RSA and Diffie-Hellman, use at least 2048-bit moduli; for elliptic
curves, we might use 256-bit moduli
Computations are 20–30× faster
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Composition
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However. . .

There may be some patent issues
Many people distrust NIST’s standardized curves—did the NSA do
something nasty?
Digital signatures using elliptic curves require a good source of
randomness for each signature—often hard on, e.g., smart cards
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Encrypting with RSA

We could try encrypting a file with RSA, but that’s unpleasant
The blocksize, with a 2048-bit modulus, is 255 bytes, so we’d have to chop
up the file into smaller pieces
RSA encryption and decryption are slow

Besides, RSA is just simple mathematical operations, so there may be a
mathematical attack
Example: “yes”3 is only 69 bits, and won’t be reduced by the modulus
operation; finding 3p503565527901556194283 is easy.
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A (More) Realistic Scenario

Bob generates a random key k for a conventional cipher.
Bob encrypts the message: c = E(k,m)

Bob pads k with a known amount of padding, to make it at least 1024 bits
(half the modulus size) long; call this k′.
k′ is encrypted with Alice’s public key 〈e,n〉.
Bob transmits {c, (k′)e mod n} to Alice.
Alice uses 〈d,n〉 to recover k′, removes the padding, and uses k to decrypt
ciphertext c.
In reality, it’s even more complex than that. . .
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What About Digital Signatures?

The same issues apply to digital signatures—how do we sign a file?
We need some sort of analog to conventional (symmetric) encryption
Answer: we sign a hash of the file
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Signing a File

Alice wants to sign a file m

She calculates h = H(m), where H is a cryptographic hash function

She signs the hash, which (of course) involves padding h to make h′

She then calculates s = (h′)d mod n and sends 〈m, s〉 to Bob
Naturally, she could also encrypt m, adding even more complexity. . .
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Requirements for Cryptographic Hash Functions

Cryptographic hash functions must have some special properties

Size Produce relatively-short, fixed-length out-
put string from arbitrarily long input

Preimage resistance Given y, it is infeasible to find x such that
H(x) = y

Second preimage resistance Given x and H(x), it is infeasible to find
y,y 6= x such that H(x) = H(y)

Collision resistance It is infeasible to find two strings, x and y,
x 6= y, such that H(x) = H(y)
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Common Hash Functions

Best-known cryptographic hash functions: MD5 (128 bits), SHA-1 (160
bits), SHA2-256/384/512 (256/384/512 bits), SHA3-224/256/384/512
(224/256/384/512 bits)
Wang et al. found practical collision attacks against MD5 and SHA-1

R They’re insecure; never use them
SHA2-256/384/512 have the same basic structure as MD5 and SHA-1—but
NIST believes they’re secure despite Wang’s attack
NIST held a design competition for a new hash SHA-3 function; the winner
(Keccak) has a completely different internal structure

Introduction to Cryptography 35 / 51



Hash Function Strength

Hash functions can be cryptographically weak, e.g., vulnerable to
differential cryptanalysis and the like
(Hash functions generally use iterated rounds, too, and have a diffusion
property)
Just as with ciphers, though, they have a maximum strength, dictated by
the output size
For preimage and second preimage attacks, that strength is
2blocksize—each random input change changes the output randomly, so
enough tries will probabilistically find the answer eventually

For collision attacks, though, it’s half the blocksize: 2blocksize/2, because
of the birthday paradox
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The Birthday Paradox

How many people need to be in a room for the probability that two will
have the same birthday to be > .5?
Naive answer: 183
Correct answer: 23
The question is not “who has the same birthday as Alice?”; it’s “who has
the same birthday as Alice or Bob or Carol or . . . ” assuming that none of
them have the same birthday as any of the others
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The Birthday Attack

Alice can prepare lots of variant contracts, looking for any two that have
the same hash
More precisely, she generates many trivial variants on m and m′, looking
for a match between the two sets
This is much easier than finding a contract that has the same hash as a
given other contract
As a consequence, the strength of a hash function against brute force
attacks is approximately half the output block size: 64 bits for MD5, 80 bits
for SHA-1, etc.
Hash function collisions have been used in real-world attacks: some
intelligence agency used a novel attack in the “Flame” malware
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(The Birthday Paradox and Block Ciphers)

Suppose that we’re using a block cipher like DES, with a 64-bit blocksize
Each encryption of a different plaintext block generates a random-seeming
64-bit block of ciphertext
What are the odds that two blocks are identical? That would leak
information about the plaintext!
From the birthday paradox, at 232 blocks—235 bytes, or about 34GB—the
probability is > .5
Conclusion: never encrypt that much with a single DES or 3DES
key—which is why AES has 128-bit blocks
Historical note: in 1974, a large disk held 200 MB, well below that limit,
and a 1.5Mb/s data link was very fast
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Hash Functions are Powerful

Hash functions are used for far more than digital signatures
In fact, they’re among the most flexible cryptographic primitives around
Other uses: random number generation, message integrity, sophisticated
tricks like coin-flipping, cryptocurrencies
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Building a Message Authentication Code (MAC)

We need a way to prevent tampering with messages
Best-known construct is HMAC—provably secure under minimal
assumptions
HMAC(m,k) = H(opad⊕ k,H(ipad⊕ k,m)) where H is a cryptographic hash
function and m is the message
Note: if the message is encrypted, do the HMAC over the ciphertext, not
the plaintext
Note: the authentication key must be distinct from the confidentiality key
Frequently, the output of HMAC is truncated
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Using Hash Functions for Random Number Generation

Cryptographic hash functions can be used for secure random number
generation—but you have to do it carefully.

Bad s = H(s);returns

Very bad—seeing one random number lets the attacker know all
future ones

OK return H(ctr++);
Secure if ctr is initialized to a large random number

Better return HMAC(k,ctr++);
The existence of a key makes this very secure
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Coin-Flipping

We want to flip a coin over the Internet
We don’t want any outside trusted parties—but how do we know the other
side isn’t cheating?
Recall that (a) the output of of a hash function is a random(-seeming)
number, and (b) because of diffusion, it doesn’t leak any information about
the input
Protocol:

1 Alice and Bob each pick random numbers rA and rB, and exchange H(rA) and
H(rB), thus committing to their values

2 They then exchange rA and rB and verify the other’s number
3 Exclusive-OR the low-order bit of rA and rB to get 0 or 1: heads or tails
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Is Coin-flipping Secure?

Is this protocol correct? Discuss. . .

What about this variant?
1 Alice picks the string s as either “red” or “blue”
2 She commits to it by sending Bob H(s)
3 Bob guesses the color and tells Alice. If he’s right, the coin is “heads”; if he’s

wrong, it’s “tails”
4 Alice discloses s, which yields the result; Bob verifies H(s) matches what he

was sent earlier

It’s easy to get these things wrong. . .
How can we fix that protocol? What assumptions are we making?
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Quantum Computers

Scientists and engineers have been developing quantum computers,
which run on quantum mechanical principles
Quantum computers use “qubits” instead of bits
Properties such as entanglement and superposition mean that they can, in
principle, run much faster than classical computers
This poses a potential threat to cryptographic algorithms
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Grover’s Algorithm

Grover’s Algorithm provides, among other things, a way to attack
symmetric ciphers such as AES
It effectively halves the key length against quantum computing brute force
attacks: AES-128 could be attack in O(264) time—and 264 is doable
This isn’t a real threat today, though—brute force attacks require
massively parallel computers. It’s hard enough to build once quantum
computer, let alone many thousands
But—the chance of this is why AES-256 exists, for protection against future
massively parallel quantum attacks
NSA sometimes wants to protect data for 100 years. . .
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Shor’s Algorithm

Shor’s Algorithm permits efficient factoring of large numbers
This cracks RSA—and for mathematical reasons, if you can factor
efficiently you can also solve discrete log, i.e., you can crack Diffie-Hellman
Elliptic curve algorithms are also vulnerable

R When this technology becomes available, all data protected by public key
technologies is vulnerable
This includes the blockchain
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Post-Quantum Algorithms

In late 2016, NIST started an open process—algorithm submissions,
conferences, etc.—to pick the best “post-quantum” algorithms
In July, NIST announced that several algorithms had advanced to Round 3.
There will be another conference next year; they hope to announce their
final choices by the end of next year
But they reserve the right to stretch things out more if needed
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Why are Quantum Computers Hard to Build?

Qubits are susceptible to “decoherence”—they lose their quantum
properties
This is caused by environmental interations: heat, magnetic fields, cosmic
rays, etc.
Some quantum computers already require extreme environmental
conditions, e.g., a temperature of .02 kelvins
There is such a thing as quantum error correction—but that requires far
more of the hard-to-build qubits
Some theoreticians think that we will never be able to build a big-enough
quantum computer to attack real-world encryption
But we don’t know, and some data must be protected for a very long time
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How Long Must Encryption Protect Data?

There’s an important implicit message here: not all data needs to be
protected for that long
Credit card numbers may only need protection for a few years, until they
expire
Cryptography to authenticate traffic only needs to last as long as the
session—once the session ends, you can’t forge new traffic for it
Some contracts—mortgages, for example—have to be secure for decades
Some national security data may need protection for 100 years or more
Figuring this out is part of engineering security solutions—and often,
stronger protection is effectively free
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Questions?

(Black-crowned night heron, Morningside Park pond, September 11, 2020)
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