
User Authentication

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


User Authentication

Types
Server issues
Client issues

User Authentication 2 / 54



Threat-Driven Analysis

Defense is always a response to offense: you don’t need to defend against
something that can’t happen
Do you need to defend against things that some adversaries can do but
not all?
Who is your enemy? Can they develop more sophisticated attacks?

User Authentication 3 / 54



Forms of User Authentication

Something you know

: passwords

Something you have

: e.g., smart card

Something you are

: e.g., fingerprint
The latter two are a response to the weaknesses of passwords

User Authentication 4 / 54



Forms of User Authentication

Something you know: passwords
Something you have: e.g., smart card
Something you are: e.g., fingerprint

The latter two are a response to the weaknesses of passwords

User Authentication 4 / 54



Forms of User Authentication

Something you know: passwords
Something you have: e.g., smart card
Something you are: e.g., fingerprint
The latter two are a response to the weaknesses of passwords

User Authentication 4 / 54



Something You Know

Ancient: “what’s the secret word? (Supposedly dates to at least Roman
times.)
Modern incarnation: passwords
Most common form of authentication

User Authentication 5 / 54



Passwords

Everyone understands the concept
Passwords should be sufficient
Not really. . .

User Authentication 6 / 54



Passwords are Really Bad

Guessable
Forgettable
Enumerable
Eavesdroppable (but that isn’t a word. . . )
Replayable
Reusable
Leakable
Probably a lot more reasons not to use them

User Authentication 7 / 54



Threat: Password File Compromised

How Should Passwords be Stored?
Not in plaintext

Administrator can see them
Can be stolen from backup media (or recycled disk drives. . . )
Editor bugs can leak them

R Something that doesn’t exist can’t be stolen!

Use a one-way hash; compare stored hash with hash of entered password
Read-protect the hashed passwords anyway—why?

User Authentication 8 / 54



Guessable Passwords

People tend to pick bad passwords
Their own name, phone number, spouse’s name, kids’ names, etc.
Easy to write password-guessing program (Morris and Thompson, CACM,
Nov. 1979) )

Take careful note of that year. . .

User Authentication 9 / 54



Guessable Passwords

People tend to pick bad passwords
Their own name, phone number, spouse’s name, kids’ names, etc.
Easy to write password-guessing program (Morris and Thompson, CACM,
Nov. 1979)
Take careful note of that year. . .

User Authentication 9 / 54



Password-Guessing Programs

Try likely words: names, dictionaries, etc.
Use specialized dictionaries, too: other languages, science fiction terms,
etc.
Try variants: “password” → “passw0rd” or “Password”
Use specialized, optimized algorithm
In uncontrolled environments, at least 40-50% of people will have
guessable passwords

User Authentication 10 / 54



Guessing Mechanisms

Online: try to log in as the user
Offline: steal a copy of the password file and try on your own machine (or
on many compromised machines—including their GPUs)
Note: that’s why we read-protect the hashed passwords

User Authentication 11 / 54



Defenses

Rate-limit online guesses
Perhaps lock out the account—but that leaves you vulnerable to DoS
attacks

Make password-guessing inherently slow: use a slow algorithm

User Authentication 12 / 54



Defenses

Rate-limit online guesses
Perhaps lock out the account—but that leaves you vulnerable to DoS
attacks
Make password-guessing inherently slow: use a slow algorithm

User Authentication 12 / 54



The Classic Unix Password-Hashing Algorithm

Use DES, an encryption algorithm with 56-bit keys in 8 bytes. (In 1979,
there were no cryptographic hash functions)
Don’t encrypt the password, encrypt a constant (all 0s) using the password
as the key

R This is where the 8-character limit comes from
Why not encrypt the password?

The system would have to have the encryption and decryption keys
available—and hence stealable
Any decent cryptosystem can resist finding the key, given the plaintext
and ciphertext
Iterate 25 times, to really frustrate an attacker
Guard against specialized hardware attacks by using the “salt” to modify
the DES algorithm

User Authentication 13 / 54



The Classic Unix Password-Hashing Algorithm

Use DES, an encryption algorithm with 56-bit keys in 8 bytes. (In 1979,
there were no cryptographic hash functions)
Don’t encrypt the password, encrypt a constant (all 0s) using the password
as the key

R This is where the 8-character limit comes from
Why not encrypt the password?
The system would have to have the encryption and decryption keys
available—and hence stealable
Any decent cryptosystem can resist finding the key, given the plaintext
and ciphertext
Iterate 25 times, to really frustrate an attacker
Guard against specialized hardware attacks by using the “salt” to modify
the DES algorithm

User Authentication 13 / 54



Salt

Pick a random number—12 bits, way back when—and use it to modify the
password-hashing algorithm
Store the salt (unprotected) with the hashed password
Prevent the same password from hashing to the same value on different
machines or for different users
Makes dictionary of precomputed hashed passwords much more expensive
Doesn’t make the attack on a single password harder; makes attacks
trying to find some password 4096× harder
Today, we use much longer salts—why?

There are many more password files, and they’re much larger
How long should the salt be?
The birthday paradox gives the answer!

User Authentication 14 / 54



Salt

Pick a random number—12 bits, way back when—and use it to modify the
password-hashing algorithm
Store the salt (unprotected) with the hashed password
Prevent the same password from hashing to the same value on different
machines or for different users
Makes dictionary of precomputed hashed passwords much more expensive
Doesn’t make the attack on a single password harder; makes attacks
trying to find some password 4096× harder
Today, we use much longer salts—why?
There are many more password files, and they’re much larger

How long should the salt be?
The birthday paradox gives the answer!

User Authentication 14 / 54



Salt

Pick a random number—12 bits, way back when—and use it to modify the
password-hashing algorithm
Store the salt (unprotected) with the hashed password
Prevent the same password from hashing to the same value on different
machines or for different users
Makes dictionary of precomputed hashed passwords much more expensive
Doesn’t make the attack on a single password harder; makes attacks
trying to find some password 4096× harder
Today, we use much longer salts—why?
There are many more password files, and they’re much larger
How long should the salt be?

The birthday paradox gives the answer!

User Authentication 14 / 54



Salt

Pick a random number—12 bits, way back when—and use it to modify the
password-hashing algorithm
Store the salt (unprotected) with the hashed password
Prevent the same password from hashing to the same value on different
machines or for different users
Makes dictionary of precomputed hashed passwords much more expensive
Doesn’t make the attack on a single password harder; makes attacks
trying to find some password 4096× harder
Today, we use much longer salts—why?
There are many more password files, and they’re much larger
How long should the salt be?
The birthday paradox gives the answer!

User Authentication 14 / 54



Examples of Salting

$ python3
>>> import crypt
>>> crypt.mksalt(method=crypt.METHOD_SHA256)
’$5$ps0ZRhwC0PmXxARk’
>>> crypt.crypt(’password’, salt=’$5$ps0ZRhwC0PmXxARk’)
’$5$ps0ZRhwC0PmXxARk$Kj0euOWYOVut3iNWJwloJFNGmtn7C6xRN.ifJQORQj1’
>>> crypt.crypt(’password’, salt=’$5$ps0ZRhwC0PmXxARK’)
’$5$ps0ZRhwC0PmXxARK$mMQfyYdG3ZZo0Kqeq6klqQmyHru9YL/TCncOteqosXD’

Note that a trivial change in the salt creates an entirely different hashed password
Also note that the salt is stored with the hashed password

User Authentication 15 / 54



Why Does Password-Guessing Work?

People are predictable
Passwords don’t have much information

According to Shannon, an 8-character word has 2.3 bits/character of
information, or a total of 19 bits
Empircally, the set of first names in the AT&T online phonebook had only
7.8 bits of information in the whole name
219 isn’t very many words to try. . .

User Authentication 16 / 54



Can We Lengthen Passwords?

Today’s password-hashing algorithms are based on cryptographic hash
functions, which take unlimited lengths of input strings
Are long passphrases guessable?
Running English text has low entropy—but no one has built a guessing
program to exploit that
No one knows if it’s even possible to exploit it

User Authentication 17 / 54



Password Change Requirements

Most security specialists agree that mandatory password changes are a
bad idea
People just add punctuation or counters to their current passwords:
MyStrong*Pw becomes MyStrong*Pw1 or some such
Algorithms have been developed that can predict password changes!
Current NIST standards agree: it’s a bad idea

User Authentication 18 / 54



Forgettable Passwords

People forget seldom-used passwords (or ones they’ve just changed to. . . )
What should the server do?
Email them? Many web sites do that

R What if someone can read your email? Your email password is the most
valuable one you have!
Reset them?

R How do you authenticate the requester?
Password hints?
Is it bad to write down passwords? If your threat model is electronic-only,
it’s a fine thing to do. If your threat model is physical, forget it. (See the
movie “Ghost”)
Primary physical threats: domestic partners, relatives, friends, and—for
some people—law enforcement

User Authentication 19 / 54



Reusable Passwords

People tend to reuse the same passwords in different places
If one site is compromised, the password can be stolen and used elsewhere
At the root of “phishing” attacks

R A fraud incident on Stubhub is believed to have used passwords stolen
from Adobe.com.
Password reuse is a very serious threat

User Authentication 20 / 54



Password Managers

Today’s users have many passwords
Password reuse is very bad, but people can’t remember lots of “strong”
passwords
Answer: password managers
Store passwords in an encrypted file
Who can see this file?
How strongly is it protected?
People use many machines today—synchronize this database? How?
Can malware get at the database?
How is it used?

R If the manager recognizes web sites, it can help protect against phishing

User Authentication 21 / 54



Eavesdroppable

Wiretapping the net isn’t hard, especially if wireless links are used
Done on the Internet backbone in 1993-4; see CERT Advisory CA-1994-01
Install a keystroke logger on the client
Install a password capture device on the server
Play games with the DNS or routing to divert the login traffic

User Authentication 22 / 54



Stealable

Shoulder-surfing
Bribery—trade a password for a candy bar
(http://news.bbc.co.uk/2/hi/technology/3639679.stm)

User Authentication 23 / 54

http://news.bbc.co.uk/2/hi/technology/3639679.stm


The Fundamental Problems

Passwords have to be human-usable
Passwords are static, and hence can be replayed

User Authentication 24 / 54



Tokens: Something You Have

Many forms of tokens
Time-based cards
USB widgets (“dongles”)
Challenge/response calculators
Mobile phones
Smart cards
NFC tokens
More

User Authentication 25 / 54



Disadvantages of Tokens

They can be lost or stolen
Lack of hardware support on many machines
Lack of software support on many machines
Inconvenient to use
Cost

User Authentication 26 / 54



Two-Factor Authentication

Two of the three types of authentication technology
Use second factor to work around limitations of first
Example: SecurID card plus PIN

User Authentication 27 / 54



SecurID Tokens

A SecurID token on two successive time cycles. The bars on the left of the
second picture indicate how many 10-second ticks remain before the display
changes, in this case about a minute. In essence, the display shows Hk(T),
where T is the time and Hk is a keyed hash function.
Generic name: TOTP (Time-based One-Time Passwords)

User Authentication 28 / 54



Soft Tokens

Phone apps can do the same things as
dedicated tokens (CU uses Duosec)
The partially-filled circle shows the time
left for that code; there’s a refresh button
to generate a new one
But—is the cryptographic secret protected
as well as on dedicated tokens? There are
hardware and software attacks possible
now

User Authentication 29 / 54



Eavesdropping Again

Can’t someone eavesdrop on a token-based or two-factor exchange?
Sure!
Must use other techniques as well: encryption and/or replay protection

User Authentication 30 / 54



Replay Protection

SecurID: code changes every minute; database prevents replay during
that minute
Challenge/response: server picks a unique number; client encrypts it
Cryptographic protocols

User Authentication 31 / 54



Cryptographic Authentication

Use cryptographic techniques to authenticate
Simultaneously, negotiate a key to use to protect the session
But where do the original cryptographic keys come from?

User Authentication 32 / 54



Cryptographic Keys are Long

An AES key is at least 128 bits. Care to remember 32 hex digits as your
password?
An RSA key is at least 2048 bits. Care to remember 512 hex digits as your
password?
Solution 1: store the key on a token
Solution 2: store the key on a computer, but encrypted

User Authentication 33 / 54



Storing Keys on Tokens

The most secure approach
Proper integration with host software can be tricky
Generally want two-factor approach: use a password to unlock the token
Ideally, the token is tamper-resistant

User Authentication 34 / 54



Storing Keys on Hosts

Software-only approach is useful for remote logins
Must use passphrase to encrypt key
Not very resistant to capture of encrypted key—we’re back to offline
password guessing
Can you trust the host to protect your key?

User Authentication 35 / 54



Use a Passphrase as a Key?

Convert the user’s passphrase to a key, and use it directly
(Remember PBKDF2)
Remember the low information content of passphrases. . .
Attack: eavesdrop on an encrypted message; guess at passphrases; see
which one yields a sensible decryption

User Authentication 36 / 54



Standardized Tokens: FIDO2

Industry-standard token
Many vendors, many interface technologies: USB-A and USB-C, NFC,
Bluetooth
Via browser integration, the tokens cryptographically verify the remote
site’s certificate
Completely prevents phishing attacks
Some FIDO2 tokens are unlocked via fingerprints

R FIDO2 tokens are the best general-purpose login technique currently
available and should be used far more widely, especially for email and
enterprise logins

User Authentication 37 / 54



Why Should Tokens be Tamper-Resistant?

Prevent extraction of key if stolen
Note: recovery of login key may permit decryption of old conversations
Prevent authorized-but-unfaithful user from giving away the secret—you
can’t give it away and still have use of it yourself.
Folks have pointed cameras at their tokens and OCRed the
digits. . . http://smallhacks.wordpress.com/2012/11/11/
reading-codes-from-rsa-secureid-token/

User Authentication 38 / 54

http://smallhacks.wordpress.com/2012/11/11/reading-codes-from-rsa-secureid-token/
http://smallhacks.wordpress.com/2012/11/11/reading-codes-from-rsa-secureid-token/


Mobile Phones

Use a phone as a token: send an SMS challenge to the phone
Indepedent failure mode: will the attacker who has planted a keystroke
logger on a computer also have access to the owner’s phone?
Are there privacy risks from everyone having your mobile number?
What about malware on the phone?

R But: attackers have learned to cope with SMS

User Authentication 39 / 54



Other Threats

Bogus SIM cards, with the help of a deluded carrier
An attacker who can inject certain messages into the phone network
An attacker who controls the phone network
Inceasing linkage between hosts and phones reduces the second factor:
it’s no longer independent

User Authentication 40 / 54



Federated Authentication

Log in—via strong-but-inconvenient authentication—to Facebook, Google,
etc.
These sites vouch for your identity to other sites
What about privacy? (Mozilla’s solution tries to solve this.)
Do you trust some other site to vouch for your users? Your employees?

User Authentication 41 / 54



Today’s Status

Strong passwords are rarely the solution—but sites can enforce them
The Morris and Thompson paper is from 1979—users had no local storage,
no local computing power, and very few logins
Password-guessing typically represents the second failure, after a site is
hacked (but you still need rate-limiting)
Password reuse is a much bigger sin
Use FIDO2 tokens!

User Authentication 42 / 54



Biometrics

Something you are
A characteristic of the body
Presumed unique and invariant over time

Metanote: biometrics is an area of rapid progress; some of the limitations I
describe here are likely to change in the near future. Exercise: which of the
problems are likely to remain difficult issues for system designers?

User Authentication 43 / 54



Common Biometrics

Fingerprint—common on phones
Facial recognition—also common on phones
Iris scan
Retinal scan
Hand geometry

User Authentication 44 / 54



Advantages of Biometrics

You can’t forget your fingers
You can’t lend your eyes to a friend
You can’t fake a fingerprint
Why aren’t they used more?
Maybe they’re not that secure. . .

User Authentication 45 / 54



Some Problems with Biometrics

False accept rate
False reject rate
Fake (or “detached”) body parts
“Bit replay”
Non-reproducibility
Many biometrics are public

User Authentication 46 / 54



False Accept Rate

No biometric system is perfect
Reducing false accept rate increases false reject rate
Usual metric: what is the true accept rate for a given false accept rate?
Substantial difference between different products
Dramatic improvements in facial recognition over the last several years, as
hard-coded algorithms were replaced by machine learning
All systems work much better for one-to-one match than “does this
biometric match something in the database?”

User Authentication 47 / 54



Why is One-to-One Match Better?

Suppose that the false positive on a 1-1 match is F

Assume that the database has N entries
False positive probability on one-to-many match is 1− (1− F)N

For F = 10−6,N = 1000000, that’s 63%

User Authentication 48 / 54



False Reject Rate

People change, including aging
Cuts, scars, glasses, colds, bandages, etc.
Problems in original image acquisition

User Authentication 49 / 54



Capture Quality

Quality of the captured data, for both initial enrollment and checking, is
crucial
Facial recognition can work well, but only under good circumstances,
including lighting, angle, obscuring details (e.g., a hat or sunglasses), etc.
Bias issues: facial recognition works best on white males; more problems
with women’s faces, darker-skinned faces, etc.

User Authentication 50 / 54



Storing Biometrics

Store a template, not the actual picture
Essentially, a one-way hash
But are these templates reversible?
It’s hard to change a fingerprint. . .

User Authentication 51 / 54



Bit Replay

Ultimately, a biometric translates to a string of bits
If the biometric sensor is remote from the accepting device, someone can
inject a replayed bit stream
What if someone hacks a server and steals a biometric? You can’t change
your fingerprints. . .

R Note: this happened with the OPM database breach
Encryption helps; so does tamper-resistance
Relying on human observation may help even more

User Authentication 52 / 54



Using Biometrics

Biometrics work best in public places or under observation
Remote verification is difficult, because verifier doesn’t know if it’s really a
biometric or a bit stream replay
Local verification is often problematic, because of the difficulty of passing
the match template around
Users don’t want to rely on remote databases, because of the risk of
compromise and the difficulty of changing one’s body
Best solution: use a biometric to unlock a local tamper-resistant token or
chip; store keys there

R This is what the iPhone does

User Authentication 53 / 54



Questions?

(Red-tailed hawk, Central Park, July 16, 2019)


	Passwords
	Tokens
	Biometrics: Something You Have

