
Access Control

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Security Begins on the Host

Computer systems must enforce the confidentiality/integrity/availability
trilogy
Something on the host—the operating system aided by the
hardware—must provide those guarantees

Access Control 2 / 51

Access Control

Hardware
Software

Operating systems
Databases
Other multi-access programs, e.g., servers for mobile apps

Distributed (including web servers)

Access Control 3 / 51

Hardware

What is the minimum necessary?
What do other mechanisms buy us?

Access Control 4 / 51

Minimum Functionality

Protect the OS from applications
Protect applications from each other
Change state from application to OS
Timer interrupt

Access Control 5 / 51

Why a Timer?

Availability is a security feature
Must prevent uncooperative applications from hogging CPU
Not going to discuss this more here, but it’s a major topic in W4118
(Operating Systems)

Access Control 6 / 51

Historical Mechanisms

Single privileged mode bit—restrict ability to execute certain instructions
Memory protection
Interrupts—hardware and software—cause state transition
The two states are (today) commonly called “kernel” and “user” mode

Access Control 7 / 51

What Are Privileged Instructions?

Ability to do I/O without the OS’s intervention—allowing that could bypass
file permission checking
Ability to manipulate timers
Ability to access other programs’ memory without OS intervention

Access Control 8 / 51

Example: IBM System/360 Mainframe

Designed in the early 1960s
Much of the architecture still in use: the IBM Z computers
4-bit protection key associated with each 4K block of memory, plus
read-protect bit
Single “supervisor mode” bit
4-bit state key of 0 can write to anything
But—operating systems of that time didn’t use the hardware to its full
capabilites

Access Control 9 / 51

Memory-Mapped Control

On some machines, e.g., the PDP-11s on which early Unix development
was done, privileged operations work by memory access
If applications have no access to such memory, they can’t do sensitive
things
But—must have way to enter privileged state

Access Control 10 / 51

Multics

Virtual memory
“Ring” structure—8 different privilege levels (i386 has rings, too)
OS could use rings 0-3; applications could use 4-7.
(Original design had 64 rings!)
Each ring is protected against higher-numbered rings
Special form of subroutine call to cross rings
Most of the OS didn’t run in Ring 0

Access Control 11 / 51

What is the Advantage of Rings?

A single bit is theoretically sufficient—why do we need rings?

Assurance!
Don’t need to trust all parts of the system equally
“Principle of Least Privilege”

Access Control 12 / 51

What is the Advantage of Rings?

A single bit is theoretically sufficient—why do we need rings?
Assurance!
Don’t need to trust all parts of the system equally

“Principle of Least Privilege”

Access Control 12 / 51

What is the Advantage of Rings?

A single bit is theoretically sufficient—why do we need rings?
Assurance!
Don’t need to trust all parts of the system equally
“Principle of Least Privilege”

Access Control 12 / 51

Assurance

How do you know something is secure
Much harder to provide later than features
A trustable secure system has to be designed that way from the
beginning: designed, documented, coded, and tested—and maybe proved

Access Control 13 / 51

Underlying Principles of Privilege

Two basic approaches to privilege: identity and attribute
Hardware protection is attribute: the state of various registers controls
what can and cannot be done
Easier to manage in a single system

Access Control 14 / 51

Rings Today

Modern x86 hardware supports 4 rings
There’s also Ring −1, for the hypervisor
Why isn’t the hypervisor Ring 0? Maximum compatibility with guest
operating systems, with as few traps as possible to the hypervisor
But rings aren’t used. . .

Access Control 15 / 51

Why Not?

Ring-crossing is expensive—dividing a kernel or an application into
multiple rings would hurt performance
Rings don’t play as well as one would like with the virtual memory system
The kernel—on Windows, Linux, and MacOS—runs in Ring 0; applications
run in Ring 3
It would be nice if applications started in Ring 2, to allow them to protect
themselves more

Access Control 16 / 51

What is the Role of the OS?

Protect itself
Separate different applications
More?

Access Control 17 / 51

App Stores

Today’s commercial operating systems (including for phones) are linked to
an “app store”
The OS can ensure that all applications are digitally signed with a
certificate from the proper app store
Can protect against malware—and for iOS, can protect Apple’s revenue
stream
Is the OS protecting the user, the applications—or protecting the system
from the user?

Access Control 18 / 51

Operating Systems and Hardware

The hardware provides the minimum functionality
The OS has to provide its own services on top of that

R This is the application’s virtual execution environment
Must manage access to I/O devices as well

Access Control 19 / 51

What Protections do Operating Systems Provide?

User authentication (why?)
File protection
Process protection
Resource scheduling (CPU, RAM, disk space, etc)

Access Control 20 / 51

User Authentication

Why authenticate users?
Most operating system privileges are granted by identity, not attributes
Procedure:

Authenticate user
Grant access based on userid

Access Control 21 / 51

File Permissions

Besides user authentication, the most visible aspect of OS security
Read protection—provide confidentiality
Write protection—provide integrity protection
Other permissions as well

Access Control 22 / 51

Classical Unix File Permissions

All files have “owners”
All files belong to a “group”
Users, when logged in, have one userid and several groupids.
3 sets of 3 bits: read, write, execute, for user, group, other
(512 possible settings. Do they all make sense?)
Written rwxrwxrwx

111 101 001: User has read/write/exec; group has read/exec; other has
exec-only

Access Control 23 / 51

Permission-Checking Algorithm

if curr_user.uid == file.uid
check_owner_permissions();

else if curr_user.gid == file.gid
check_group_permissions();

else
check_other_permissions();

fi

Note the else clauses—if you own a file, “group” and “other” permissions
aren’t checked

Access Control 24 / 51

Execute Permission

Why is it separate from “read”?
To permit only execution
Cannot copy the file
Readable only by the OS, for specific purposes

Access Control 25 / 51

Directory Permissions

“write”: create a file in the directory
“read”: list the directory
“execute”: trace a path through a directory

Access Control 26 / 51

Example: Owner Permissions

$ id
uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)
$ ls -l not_me
----r--r-- 1 smb wheel 29 Sep 12 01:35 not_me
$ cat not_me
cat: not_me: Permission denied

I own the file but don’t have read permission on it

Access Control 27 / 51

Example: Directory Permissions

$ ls -ld oddball
dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball
$ ls oddball
cannot_get_at
$ ls -l oddball
ls: cannot_get_at: Permission denied
$ cat oddball/cannot_get_at
cat: oddball/cannot_get_at: Permission denied

I can read the directory, but not trace a path through it to
oddball/cannot_get_at

Access Control 28 / 51

Deleting Files

What permissions are needed to delete files?
On Unix, you need write permission on the parent directory
You can delete files that you can’t write. You can also write to files that you
can neither create nor delete
Other systems make this choice differently

Access Control 29 / 51

Historical Note

Unix has never been fond of asking “do you really mean that?”
That said, the 1971 Bell Labs Unix Programmer’s Manual said

BUGS rm probably should ask whether a read-only file
is really to be removed

and by 1973 that had been implemented
In other words, the Unix model is philosophically correct but perhaps
incorrect from a human factors perspective

Access Control 30 / 51

https://www.tuhs.org/Archive/Distributions/Research/Dennis_v1/man13.pdf

Access Control Lists

9-bit model not always flexible enough
Many systems (Multics, Windows XP and later, Linux, MacOS) have more
general Access Control Lists
ACLs are explicit lists of permissions for different parties
Wildcards are often used

Access Control 31 / 51

Sample ACL

smb.* rwx
4181-ta.* rwx
*.faculty rx
. x

Users “smb” and ‘4181-ta” have read/write/execute permission. Anyone in
group “faculty” can read or execute the file. Others can only execute it.

Access Control 32 / 51

Order is Significant

With this ACL:

*.faculty rx
smb.* rwx
4181-ta.* rwx
. x

I would not have write access to the file

Access Control 33 / 51

MacOS ACLs

Access Control 34 / 51

Windows 10 ACLs

Access Control 35 / 51

Linux ACLs

$ getfacl acl.pdf
file: acl.pdf
owner: smb
group: smb
user::rw-
user:postfix:-w-
group::r--
group:landscape:--x
mask::rwx
other::r--

The standard Unix permissions are translated into ACL entries

Access Control 36 / 51

Setting File Permissions

Where do initial file permssions come from?
Who can change file permissions?

Access Control 37 / 51

Unix Initial File Permissions

Unix uses “umask”—a set of bits to turn off when a program creates a file
Example: if umask is 022 and a program tries to create a file with
permissions 0666 (rw for user, group, and other), the actual permissions
will be 0644.
Default system umask setting has a great effect on system file security
Set your own value in startup script; value inherited by child processes

Access Control 38 / 51

Why Umask?

Suppose files were always created with rw,r,r permissions
What’s wrong with the application simply changing the file permissions
after creating the file?
Race conditions

Access Control 39 / 51

What is a “Race Condition”?

A race condition is when two or more asynchronous processes try to access
the same resource “simultaneously” but it is not possible to control or predict
which will happen first.

Sequence 1

Create file mode 666
Change permissions to 600
Attacker tries to read the file

Sequence 2

Create file mode 666
Attacker tries to read the file
Change permissions to 600

It is impossible to predict which will happen!

Access Control 40 / 51

Race Conditions

Made easier by multicore CPUs—there really is true simultaneity now
Extremely hard to find by testing, unless you tune your tests specifically
for each such situation
Many different variants

Access Control 41 / 51

TOCTTOU: Time of Check to Time of Use

TOCTTOU races: a program tries checking file permissions itself instead of
relying on the OS

fn = getfilename();
if (check_user_perms(fn))

/* Attacker changes the
file here! */

process_file(fn);

$ touch file attacker-file
$ system_cmd attacker-file &
$ rm attacker-file
$ ln (system-file) attacker-file

Access Control 42 / 51

Multics Initial File Permissions

Directories contain “initial access control list”—values set by default for
new files
Common setting:

smb.faculty rw
*.sysdaemon r
. -

If group “sysdaemon” doesn’t have read permission, the file can’t be
backed up!
Linux also have default ACLs for new files

Access Control 43 / 51

Privilege-Setting Privilege

Who has the right to set file permissions?
Generally, the file owner can set its permissions
Note: viruses and other malware can change permissions on behalf of
some user
A user cannot use file permissions to protect their own account from
malware executing with their privileges

Access Control 44 / 51

Privileged Users

(We’ll discuss privilege next week)
Root or Administrator can override file permissions
This is a serious security risk—there is no protection if a privileged account
has been compromised
There is also no protection against a rogue superuser. . .
Secure operating systems do not have the concept of superusers

Access Control 45 / 51

Database Access Control

Often have their own security mechanisms
Permit user logins, just like operating systems
Some have groups as well
Permissions are according to database concepts: protect rows and columns
Different types of operations: select, insert, update, delete, and more

Access Control 46 / 51

Databases versus OS Security

The database has many objects in a single OS file
The OS can control access to the file
The DBMS has to control access to objects within the file
The set of database users is not the same as the set of OS users

Access Control 47 / 51

Web/Mobile App Server Security

Similar issues arise for other multi-user applications
Most obvious example: gmail and other big mail systems
Application users are not OS users—which means that the operating
system’s file protections can’t be used
Query: are there race condition attacks?

Access Control 48 / 51

Why Use File Permissions?

File permissions were designed for multi-user computers—do we still need
them?

Yes—prevent privilege escalation
Protect the OS from applications (and users, and malware)
Protect parts of applications from each other, e.g., in web servers
Protect resources such as keys

Access Control 49 / 51

Why Use File Permissions?

File permissions were designed for multi-user computers—do we still need
them?
Yes—prevent privilege escalation
Protect the OS from applications (and users, and malware)
Protect parts of applications from each other, e.g., in web servers
Protect resources such as keys

Access Control 49 / 51

System Design Principles

Essentially nothing should be world-writable
Making things world-readable, unless there’s a strong reason not to,
generally simplifies design and coding
You can’t easily protect intellectual property by making things
read-protected—the attacking users generally have full permissions on the
system

Access Control 50 / 51

Questions?

(American robin eating a berry, Morningside Park, October 19, 2020)

