
Final Project
Steven M. Bellovin


https://www.cs.columbia.edu/~smb

1



Steven M. Bellovin

Secure Messaging

The goal of the project is to build a secure messaging 
system, based on TLS and certificates.

2



Steven M. Bellovin

Details

• One server that handles all requests


• Several client programs, each with specific functionality


• All communications via HTTPS


• A formal test process

3



Steven M. Bellovin

The Server

• One server program that handles all requests


• You do not need to worry about simultaneous requests


• Authenticates user by either password or client-side certificate


• Issues certificates on request, and stores them


• Stores incoming messages, and delivers them to the client on request


• May need to be split so that some functions are done in a sandbox

4



Steven M. Bellovin

Client Programs

5

getcert Log in with username and password; the server generates and 
returns a certificate

changepw Log in with username and password, and supply a new password

sendmsg
Log in with a client-side certificate, send a list of recipient names, 
and receive a list of certificates. Encrypt the message to those 
certificates, digitally sign it, and upload it.

recvmsg
Log in with a client-side certificate and receive a single encrypted 
message from the server; it is then deleted from the server. Verify 
the signature and display the message.



Steven M. Bellovin

Intermediate Deliverables

• System architecture


• Crucial security decisions and their rationale


• Sandboxing decisions


• File layout and permissions


• Other security-sensitive decisions


• Test plan


• What you’re testing, and why


• Tests must emulate attacks!


Graded mostly on effort, not absolute correctness!

6



Steven M. Bellovin

Final Deliverables

• Source code


• The client and server programs must be in C or C++


• Test programs may be written in any language you choose


• Revised design and test plan documents


• Test mechanisms and scripts

7



Steven M. Bellovin

Don’t!

In the interests of sanity and effort, there are things I do not want you to do.


• No GUIs—just simple command-line clients. Writing a GUI takes too much 
time


• Don’t multithread the server; assume there are no simultaneous requests 
(yes, this lets you avoid some security issues)


• Do not add other commands or functionality, except in your test 
mechanisms


• Don’t bother writing code to add users to the system—we’ll supply that list

8



Steven M. Bellovin

OpenSSL

• OpenSSL has many, many library routines


• I’ll point to suggested ones

9



Steven M. Bellovin

HTTPS

• I will describe a subset of HTTPS that will be used for all communications


• Why HTTPS? It already exists—but it’s too complex, so I’ll subset it


• You may, if you wish, do some debugging via your browser

10



Steven M. Bellovin

Sandboxing

• We’ll be discussing it in a few weeks


• Briefly, it’s a way to restrict the abilities of a process, to limit the damage if 
it should be compromised


• How you separate the privileged and sandboxed sections is a crucial 
design decision

11



Steven M. Bellovin

Teams

• Teams of approximately four people


• You’re welcome to form your own teams; email XXX@columbia.edu


• We’ll assign teams for everyone else—and we’ll try to match timezones


• If you haven’t submitted the timezone form, please do so now


• Feel free to adjust your timezone based on your normal sleep 
schedule…


• You’re free to organize your team however you choose

12



Steven M. Bellovin

Storage

• You are strongly encouraged to use Github as a shared repository for your 
code


• For your documents, you can use Google Docs or (for LaTeX users) Github 
or overleaf.com

13



Steven M. Bellovin

More Documents

• The promised documentation will be uploaded to the website


• Keep watching the entry for for the final project

14



Questions?

15


