
Architecture

Steven M. Bellovin October 31, 2016 1



Web Servers and Security

• The Web is the most visible part of the net

• Two web servers—Apache (open source) and Microsoft’s
IIS—dominate the market
+ Apache has 24%; IIS has 45%. (Nginx, another open source web
server, is in third place with 14%.) (source: http://news.
netcraft.com/archives/web_server_survey.html)

• Both major servers have lots of functionality

• Are they secure? Let’s look at Apache.

Steven M. Bellovin October 31, 2016 2



Metanote on Program Complexity

• Both Apache and IIS are very large, complex programs

• Large, complex programs are often buggy; these are no exception

• Both have had security problems

• IIS used to be very insecure:

Using Internet-exposed IIS Web servers securely has a high
cost of ownership. Nimda has again shown the high risk of
using IIS and the effort involved in keeping up with Microsoft’s
frequent security patches.

—The Gartner Group, 2001

• (They canceled that warning in 2004)

• Web servers are still large and complex. . .
Steven M. Bellovin October 31, 2016 3



Important Web Server Features

• Access control

• User behavior

• CGI (Apache) or ASP (IIS) scripts (often via special scripting
languages)

• Plug-ins

• Back-end databases

• Cryptography

• (Does this remind you of an operating system?)

Steven M. Bellovin October 31, 2016 4



Access Control

• Many different forms

• Many different types of authentication

• Many interactions

Steven M. Bellovin October 31, 2016 5



Document Root

• All files served must reside under a certain directory

• Watch out for “..” in URLs (gee, we’ve seen that before)

• For convenience, some “subtrees” can reside somewhere else:

ScriptAlias /mailman/ "/usr/pkg/lib/mailman/cgi-bin/"

Alias /pipermail/ "/var/db/mailman/archives/public/"

Alias /mailman-icons/ "/usr/pkg/lib/mailman/icons/"

• If the Web server supports “virtual hosting”, each “host” gets its own
subtree
+ With virtual hosting, a single machine and web server can offer
up several different web sites

Steven M. Bellovin October 31, 2016 6



Explicit Access Control

• Access control lists settable by the webmaster for any directory tree

• Passwords or certificates can be configured as well

• Permission can be granted or withheld based on client IP address

• If a directory has no index.html file, should the web server just list
its contents?

• Applications can do their own authentication and access control

• All of these interact; combinations can be used

Steven M. Bellovin October 31, 2016 7



A Sample Configuration

Here is a .htaccess file for a directory:

<Files *>

AuthUserFile /home/smb/pwdir/.htpasswd

AuthGroupFile /dev/null

AuthName "File Access"

AuthType Basic

Require valid-user

</Files>

The string File Access is displayed to the user. Logins and passwords
are stored in /home/smb/pwdir/.htpasswd.

Steven M. Bellovin October 31, 2016 8



Web Authentication

A web password file:

user1:eO3rzWPNjjZFo

user2:CqkaeLJSVcRpI

Steven M. Bellovin October 31, 2016 9



That’s Rarely Used—Why?

• No site-specific display

• No error recovery, e.g., a link for “I forgot my password”

• Too restrictive—no good option for partial display, e.g., of a news
article

• A simple linear file doesn’t scale up very well

Steven M. Bellovin October 31, 2016 10



Which is Implemented Better?

• Who implemented the application’s password logic?

• Did they do it correctly?

• What about related information, such as email address?

Steven M. Bellovin October 31, 2016 11



Operating System Access Control

• Can the web server benefit from OS access control?

• What UIDs does the server run under?

• What permissions can/should be used for the files being served?

Steven M. Bellovin October 31, 2016 12



“Privileged” Ports versus Security

• Most Unix systems reserve ports < 1024 for root

• Web servers listen on port 80; therefore, they have to run as root

• Do we really want such a large, complex program running as root?
Not if we can help it. . .

Steven M. Bellovin October 31, 2016 13



Shedding Privileges

• Apache starts as root

• Note: it is not setuid; it must be invoked by root. (Why is that the right
choice?)

• It opens the socket and some log files, then forks and sheds privileges

• Serving web pages is done as non-privileged user “www”

Steven M. Bellovin October 31, 2016 14



File Permissions

• If the web server isn’t root, it can’t open protected files

• All pages served must be readable by the web server, its group, or
“other”

• Don’t make them owned by www; that way, a compromised web
server can’t overwrite them

• In other words, the web server itself has as few privileges as possible

Steven M. Bellovin October 31, 2016 15



Design Philosphy

• Use the OS to protect the system against the web server

• Assume the web server can enforce its own access control
mechanisms

Steven M. Bellovin October 31, 2016 16



Can We Lock Things Away?

• We don’t want content owned by user www

• We could try putting user content under some lock directory, with a
setuid helper program to let people publish web pages

• We can protect a few resources by using group read
permissions—make the content group-readable but not
other-readable, and let the web server run with several groups’
permissions

+ Unfortunately, Apache doesn’t seem to support that

• There’s still a problem with scripts

Steven M. Bellovin October 31, 2016 17



Scripts

• Retrieving static files is ok, but scripts make life interesting

• Scripts are programs

• Each script is a separate network service

• Is each one correct?

• From the Apache Security Guide: “Always remember that you must
trust the writers of the CGI script/programs or your ability to spot
potential security holes in CGI, whether they were deliberate or
accidental.”

Steven M. Bellovin October 31, 2016 18



Script Permissions

• In general, all scripts run with the same permissions

• This uid shouldn’t own any files; see above for OS access controls

• Scripts can interfere with each other: “All the CGI scripts will run as
the same user, so they have potential to conflict (accidentally or
deliberately) with other scripts e.g. User A hates User B, so he writes
a script to trash User B’s CGI database.”

Steven M. Bellovin October 31, 2016 19



Design Philosophy

• Use Apache access controls to isolate the dangerous stuff

• Use OS permission mechanisms—as invoked by Apache—to isolate
CGI scripts from each other

• Separation isn’t as strong as for the base Apache system, because of
the overwrite scenario

Steven M. Bellovin October 31, 2016 20



Plug-Ins

• Scripting languages are often available as Apache modules

• This means that they run as part of the Apache process

• Modules are an efficiency hack: save the expense of fork()/exec()

• Modules run with the full permissions (and address space) of Apache

• Very dangerous!

Steven M. Bellovin October 31, 2016 21



PHP’s Safe Mode

• PHP, if safe mode is turned on, restricts scripts to opening files
owned by the script owner

• This in an application—PHP—enforcing something resembling OS
permissions

• Did they get it right? Are there race condition attacks?

• Still does not protect against attacks from on-machine

Steven M. Bellovin October 31, 2016 22



Other Script Languages

• Java can be configured to be secure

• To my knowleged, neither Perl nor TCL—two other languages that
can run as plug-ins—have such a feature

• There is no way to confine C or C++

Steven M. Bellovin October 31, 2016 23



Invoking Scripts

• Scripts are often invoked with client-supplied parameters

• Magic shell characters aren’t as big a problem for parameters,
because they’re passed to scripts via an environment variable, not on
the command line

• But—what about magic shell characters in the script name?

• Example: http://www.example.com/cgi-bin/‘rm-rf/‘

• After all, if it’s in cgi-bin it’s executable. . .

Steven M. Bellovin October 31, 2016 24



Administrator Strategy

• Use a complex local scheme

• Provide a setuid program to copy user content to the web server

• Do not allow user programs to execute on that server

• Permit only “safe” scripting languages with their own access control

• Do not permit execution of C or C++ programs!

• Use web server access controls to restrict other access

Steven M. Bellovin October 31, 2016 25



Uploading Files
• If all scripts run with the same permissions, and if local users have

read-access to user content, how can you do safe upload?

• Example: suppose I wanted to write a PHP script for homework
submission

• Create an upload directory owned by me that is mode rwx,-wx,-wx:
anyone can write to it or trace a search path, but not read it

• Use a true-random string for part or all of the filename

• For instance, store smb2132.0.tar as
158cb5864f2c7662b-smb2132.0.tar (generated from
/dev/urandom)

• No one will guess that to retrieve it or overwrite it

• Note: I’ll be able to list the directory and read the files (if I set the file
permissions correctly), but I won’t own the files; www will

Steven M. Bellovin October 31, 2016 26



Back-End Databases

• Scripts are often front-ends to databases

• Does the database have its own access control? Where is the
password stored?

• How does the script supply the password?

• Remember that any file on the server is readable by all other users or
script writers. . .

Steven M. Bellovin October 31, 2016 27



Protecting the Database

• If the web server is hacked, how do you protect the database?

• One answer: put it on a separate machine

• But—a hacked web server can issue bogus queries

• Why move it?

• Restrictions and logging

Steven M. Bellovin October 31, 2016 28



Restrictions

• The web server does not need full access to the database

• Example: it doesn’t need to be able to read credit card numbers, only
write them

• (It may need to read a “display” version, e.g., the last four digits—but
that can be a separate column in the database)

• More details on this later in the term

Steven M. Bellovin October 31, 2016 29



Logging

• If the web server is compromised, its logs can’t be trusted

• If the database server is on another machine, it can log all changes
made to it

• Again, more later

Steven M. Bellovin October 31, 2016 30



Ignoring the Database Server

• A database is just a (very large) file with a particular internal structure

• A sophisticated attacker who has full privileges can read that file
without going through the server and its permissions and logs

• Putting the database elsewhere protects against that

Steven M. Bellovin October 31, 2016 31



Hacking the Database Anyway

• This is good, but. . .

• One common attack is SQL injection—and that’s an attack on the
database directly, not the web server

• Putting it on a different computer doesn’t help

Steven M. Bellovin October 31, 2016 32



Design Issues

• Neither the OS nor Apache’s access controls can help us much

• We have to rely on the script language’s access controls

• Even that may not protect us from subverted scripts

Steven M. Bellovin October 31, 2016 33



Cryptography

• TLS encryption used for most e-commerce

• TLS uses hybrid public key/symmetric crypto

• Where does the web server get is private key?

• Again, how do we store a key on a computer?

Steven M. Bellovin October 31, 2016 34



Key Storage

• Ideally, it’s stored in encrypted form, or in some tamper-resistant
device

• We can’t store it encrypted—how is the decryption key supplied at
Apache startup?

• A few large sites use TLS front-end/load-balancer devices, but these
aren’t common

• We must store the key in the clear, on the web server machine

Steven M. Bellovin October 31, 2016 35



Protecting the Key

• Of course, it’s stored mode r--,---,---

• It’s also owned by root, and read in at startup before changing UIDs

• Why? To provide maximum OS protection against subversion

Steven M. Bellovin October 31, 2016 36



Authentication

• Two basic types: passwords and client-side certificates

• Passwords can be for the built-in Web browser authentication or for
application-specific authentication

• Passwords should never be used without encrypting the network
connection

• Client-side certificates are more secure, but they’re rare

• They’re also less convenient: how does the user carry around a
private key to multiple machines?

• Ultimately, the client’s identity feeds into Apache’s access control
mechanisms

Steven M. Bellovin October 31, 2016 37



Phishing

• Trick people into sending their passwords to the wrong site

• People could check the site’s certificate—but very few people do that

• Legitimate site should never email clickable links—but many do

• What good is a strong web password?

Steven M. Bellovin October 31, 2016 38



Password Managers

• Store passwords for many web sites

• Protect them with a master password

• The code matches the web site name against the stored password; it
won’t be fooled by phishing email

Steven M. Bellovin October 31, 2016 39



Lessons

• Web servers are very hard to secure

• We need all of our tools: OS permissions, application ACLs, script
language security, cryptography, and more

• There are often residual issues even then

Steven M. Bellovin October 31, 2016 40


